scholarly journals RECYCLED POLYETHYLENE BONDED PARTICLE BOARD FROM PULPED AND UNPULPED GMELINA ARBOREA SAW DUST WASTES

2014 ◽  
Vol 10 (3) ◽  
pp. 2457-2467
Author(s):  
B. O. Ogunsile ◽  
R. Saheed

Particle boards were prepared from saw dust wastes obtained from Gmelina aborea using polyethylene as binder. The boards were produced under three different compositional variables, namely: particles sizes (1 µm, 1.5 µm and 2 µm), densities (450kg/m3, 550 kg/m3 and 650 kg/m3) and mixing ratios ofsaw dust to polyethylene (30:70, 40:60 and 50:50). Part of the saw dust samples were chemically modified by pulping with caustic soda at 110oC and the effect of modification was examined on the physical and mechanical properties of the particle boards. The results showed that the chemically modified particle boards showed improved resistance to swelling and water absorption while a decrease was observed in the values of the modulus of rupture and elasticity.

Author(s):  
Atoyebi Olumoyewa Dotun ◽  
Adeolu Adesoji Adediran ◽  
Adisa Cephas Oluwatimilehin

The current work reports on the fabrication of composite matrix from saw dust (SD) and recycled polyethylene terephthalate (PET) at different weight ratio by flat-pressed method. Wood plastic composites (WPCs) were made with a thickness of 15 mm after mixing the saw dust and PET followed by a three phase press cycle. Physical properties (Density, Water Absorption (WA) and Thickness Swelling (TS)) and Mechanical properties (Modulus of Elasticity (MOE) and Modulus of Rupture (MOR)) were determined base on the mixing ratios according to the standard. WA and TS were measured after 2 h and 24 h of immersion in water. The results showed that as the density increased, the SD content decreased from 90 % to 50 % into the matrix. However, WA and TS decreases when the PET content increased in the matrix. Remarkably, the MOE and MOR attained a maximum point at 964.199 N/mm2and 9.03 N/mm2respectively in 50 % SD content. In comparism with standard, boards D and E can be classified as medium density boards while A, B and C are low density boards. The results indicated that the fabrication of WPCs from sawdust and PET would technically be feasible for indoor uses in building due to favorable physical properties exhibited. The mechanical properties response showed that it cannot be used for structural or load bearing application.


2014 ◽  
Vol 6 (1) ◽  
pp. 15 ◽  
Author(s):  
Budi Tri Cahyana

This research aimed to get the physical and mechanical properties of non adhesive-particle board from oil palm empty fruit bunches. The oil palm empty fruit bunches were degradated to fibre and boiled in boiling water during 60 minute then dried in ± 2 weeks. The dried raw material was chopped to be fibre in 5 mesh, 10 mesh, and 16 mesh. It were complied into a mold and then hot pressed in 35 kgf/cm2 pressure during 10 minute with 3 of temperature variety, 160°C, 180°C and 200°C. The result showed that the average of particle board water content was 7,11 -  9,85 % and the density was 0,63 – 0,76 gr/cm3. The highest thickness swelling was 22,59 % in 10 mesh and 160 0C (a2b1) temperature of oil palm empty fruit bunches. The modulus of rupture was 211,67 kg/cm2  in 10 mesh and 180 0C (a2b2) temperature. The modulus of elasticity was 490,85 kg/cm2 in 10 mesh and 160 0C (a2b1) temperature. The tensile strength was 7,49 kg/cm2 in 5 mesh and 200 0C (a1b3) temperature. The average of physical and mechanical properties such as water content, density, modulus of rupture, tensile strength were fulfill the SNI requirement, while the average of thickness swelling and modulus of elasticity were not fulfill the SNI requirement.Keywords: oil palm empty fruit bunches, particle board


2021 ◽  
Vol 9 (3) ◽  
pp. 475-487
Author(s):  
Siti Aisyah ◽  
Januar Haryadi ◽  
Muhammad Iqbal Maulana ◽  
Marwanto ◽  
Denni Prasetia ◽  
...  

The objective of this study was to evaluate the effects of steam treatment of strands on the physical and mechanical properties of oriented strand board (OSB) from gmelina wood (Gmelina arborea) bonded with two types of adhesive. Strands of gmelina wood were steamed at 126°C and pressure of 0.14 MPa for 1 h. OSBs were prepared with a 0.6 g/cm3 target density using two types of adhesives, namely methylene diphenyl diisocyanate (MDI) and phenol-formaldehyde (PF) resins. The resin content used was 5% for MDI and 10% for PF. The physical and mechanical properties of the OSB were evaluated referring to the JIS A 5908-2003 standard, and the values were compared with CSA 0437.0 (Grade O-1) standard. The results showed that the steam treatment improved the dimensional stability of OSB, as shown from the decrease of water absorption and thickness swelling. Steam treatment also increased the mechanical properties of the OSB, such as modulus of elasticity, modulus of rupture, internal bonding strength, and screw holding power. The results revealed that gmelina wood OSB bonded with MDI adhesives produced better OSB than bonded with PF resin. Keywords: gmelina, methylene diphenyl diisocyanate, oriented strand board, phenol-formaldehyde, steam treatment  


2012 ◽  
Vol 576 ◽  
pp. 314-317
Author(s):  
Sinin Hamdan ◽  
M. Saiful Islam

Five types of selected tropical light hardwoods were chemically modified with benzene diazonium salt to improve their physical and mechanical properties. Benzene diazonium salt underwent a coupling reaction with wood which was confirmed through FT-IR analysis. The compressive modulus of the treated wood increased, whereas modulus of rupture was shown to decrease on treatment. The modified wood samples had higher hardness (Shore D) values compared to that of the control ones.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chatree Homkhiew ◽  
Surasit Rawangwong ◽  
Worapong Boonchouytan ◽  
Wiriya Thongruang ◽  
Thanate Ratanawilai

The aim of this work is to investigate the effects of rubberwood sawdust (RWS) size and content as well as the ratio of natural rubber (NR)/high-density polyethylene (HDPE) blend on properties of RWS reinforced thermoplastic natural rubber (TPNR) composites. The addition of RWS about 30–50 wt% improved the modulus of the rupture and tensile strength of TPNR composites blending with NR/HDPE ratios of 60/40 and 50/50. TPNR composites reinforced with RWS 80 mesh yielded better tensile strength and modulus of rupture than the composites with RWS 40 mesh. The TPNR/RWS composites with larger HDPE content gave higher tensile, flexural, and Shore hardness properties and thermal stability as well as lower water absorption. The TPNR/RWS composites with larger plastic content were therefore suggested for applications requiring high performance of thermal, physical, and mechanical properties.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6795-6810
Author(s):  
Nurul Fatiha Osman ◽  
Paimon Bawon ◽  
Seng Hua Lee ◽  
Pakhriazad Hassan Zaki ◽  
Syeed SaifulAzry Osman Al-Eldrus ◽  
...  

Particleboard was produced by mixing oil heat-treated rubberwood particles at different ratios, with the goal of achieving high dimensional stability. Rubberwood particles were soaked in palm oil for 2 h and heat treated at 200 °C for 2 h. The treated particles were soaked in boiling water for 30 min to remove oil and were tested for chemical alteration and thermal characterization via Fourier-transform infrared spectroscopy and thermogravimetric analysis. Particleboard was fabricated by mixing treated rubberwood particles (30%, 50%, and 70%) with untreated particles (70%, 50%, and 30%, respective to previous percentages) and bonded with urea-formaldehyde (UF) resin. The results revealed that oil-heat treated particles had greater thermal stability than the untreated particles. The addition of oil heat treated particles improved the physical properties of the particleboard with no significant reduction in mechanical strength. However, this was only valid for ratios of 70% untreated to 30% treated and 50% untreated to 50% treated. When a ratio of 70% oil heat treated particles was used, both the physical and mechanical properties were reduced drastically, due to bonding interference caused by excessive oil content. Particleboard made with a ratio of 5:5 (treated to untreated) exhibited the best physical and mechanical properties.


2017 ◽  
Vol 41 (1) ◽  
Author(s):  
Mírian de Almeida Costa ◽  
Cláudio Henrique Soares Del Menezzi

ABSTRACT Thermo-mechanical treatment is a technique for wood modification in which samples are densified by means of heat and mechanical compression, applied perpendicularly to fibers, which under different combinations of time, temperature, and pressure increases wood density and thus improve some of its properties. This study aimed to treat thermo-mechanically parica plywood and observe the effects on its physical and mechanical properties. Specimens were submitted to two treatments, 120 and 150 ºC, remaining under pressure for seven minutes and, subsequently, under zero pressure for 15 minutes. Results showed a significant increase in specific mass from 0.48 g cm-3 to an average of 0.56 g cm-3, and a compression ratio of about 31.7% on average. Physical properties also varied significantly and results showed that treated samples swelled and absorbed more water than those untreated, leading to a greater thickness non-return rate. This indicates the proposed thermal treatments did not release the internal compressive stress generated during panel pressing, not improving its dimensional stability as a result. On the other hand, mechanical properties were positively affected, leading to an increase of 27.5% and 51.8% in modulus of rupture after treatments at 120 and 150 ºC, respectively. Modulus of elasticity and glue-line shear strength did not vary statistically and Janka hardness was 29.7% higher after treatment at 150 ºC.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Dendi Prayoga ◽  
. Dirhamsyah ◽  
. Nurhaida

This research aimed to examine the physical and mechanical properties of particle boards based on the composition of raw materials and adhesive content and know the treatment of the composition of raw materials and the best adhesive content and meet the standard JIS A 5908-2003. The research was conducted at Wood Workshop Laboratory, Wood Processing Laboratory Faculty of Forestry,Tanjungpura University and Laboratory of PT. Duta Pertiwi Nusantara Pontianak. The adhesive used is Urea Formaldehyde with 52% Solid Content. Comparison of the composition of rice husks and sengon varies namely rice husk 50%: sengon 50%, rice husk 60%: sengon 40% and rice husk 70%: sengon 30%  and variations in the levels of UF adhesives, namely 14% and 16%, with target density 0,7 gr/cm3. The particleboard was 30 cm x 30 cm x 1 cm Pressing at temperature 140oC for 8 minutes, with  pressure of 25 kg/cm2. The research results of the study of density and moisture content meet the standards JIS A 5908-2003. The best particle values of rice husk and sengon  with composition a ratio of  rice husk 50%: sengon 50% , 16% adhesive content  16%, with density value of  0,7072 gr/cm3, moisture content 9,1949 %, thick development 12,3210 %, water absorption 68,8270 %, MOE 12110,7273 kg/cm2, MOR 161,0025 kg/cm2, firmness sticky 1,9320 kg/cm2, screw holding strength 62,3124 kg.Keywords : adhesive, composition, particle board, rice husk, sengon


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
. Erma ◽  
Fadiilah H Usman ◽  
. Muflihati

Physical and mechanical properties of wood is one of the basic properties that need to be known in the selection of wood, because the physical and mechanical properties of wood are not the same height on the stem. Increased wood demand gives the opportunity to use wood that is not yet known for its marketing, one of which is Salam wood (Syzygium polianthum (Wight) Walp). The purpose of this research was to determine the physical and mechanical properties of Salam wood based on the height of the stem so that Salam wood can be optimally utilized by testing based on Classification SNI – 5 PKKI 1961. Methods of making test and test examples based on British Standard Methods No. 373-1957. The results showed that Salam wood has physical properties with an average  brown colour, the moisture content 3,13 % , density  0,58 kg/cm2 , Depreciation 2,59 %. Salam has mechanical properties with an average height position stem from base to tip with Modulus of Elastiscity (MOE)  97.701,54 , Modulus of Rupture (MOR) 659,18  and  Modulus Crushing  Streang 342,86 . Salam can be classified into strong class III and based on its properties and mechanics, it is suitable for use as a lightweight construction and furniture.Keywords: Density, depreciation, MCS, MOE, moisture content, MOR


Sign in / Sign up

Export Citation Format

Share Document