scholarly journals Sol-Gel Synthesis, Magnetic and Optical Properties of Co2+:Nd3+::2:1 molar ratio doped in SiO2

2015 ◽  
Vol 11 (3) ◽  
pp. 3367-3374
Author(s):  
Bidhu Bhusan Das ◽  
Ruppa Govinda Rao

Synthesis of Co2+:Nd3+::2:1 molar ratio doped SiO2 with Co2+ ions concentrations viz. 0.0004, 0.001,  0.002, 0.003, 0.004 moles in S1-S5, respectively are performed by sol-gel method. Observed values of the densities and the concentrations of the Co2+ ions in S1-S5 are found to be 2.26, 2.29, 2.37, 3.44, 2.49 g/cm3, and ~ 1020 ions/g, respectively. Powder XRD results show the formation of amorphous SiO2 phase in the samples. DTA-TGA/DTG traces in the range 27-700 ˚C show no characteristic event in the samples. The IR peak in the range 412-418 cm-1 is ascribed to the asymmetric mode of the octahedral [NdO6/2]3- units. The peak around 440 cm-1 in S1-S5 is due to the ν2-symmetric bending mode of the tetrahedral [SiO4/2]4- units. The weak IR peak ~ 670 cm-1 is due to the ν1-mode of the tetrahedral [CoO4/2]4- units. The calculated values of the magnetic susceptibility from the observed magnetic moments data at 300 K are found to be ~10-6  emu/gG in S1-S5 which show the weak paramagnetic nature of the materials.  The EMR lineshapes recorded at 6, 50, 77, and 300 K are very broad, isotropic and smeared out with only two detectable characteristic peaks. The giso-value ~ 2.3 is due to the doped Co2+(3d7) ions in tetrahedral coordinations, while the giso-value ~ 2.01 is due to the doped Nd3+(4f3) ions in distorted octahedral coordinations. The lineshapes only at 6 K are distinct, while at higher temperatures  these peaks are severely smeared out. The optical absorption broad band at ~750 nm (13262 cm-1) is assigned to 4I9/2 ® 4F7/2 + 4S3/2 transitions in optically active Nd3+(4f3) ions, and the  peak ~ 520 nm (19230 cm-1) is attributed to 4A2g ® 4T1g(P) transitions in Co2+ (S=3/2, 3d7) ions in tetrahedral coordinations.

2014 ◽  
Vol 906 ◽  
pp. 66-71
Author(s):  
Zhen Quan Li ◽  
Qiang Zhen ◽  
Ya Li Wang

High purity ZrSiO4 powder were synthesized using Si (C2H5O)4 and ZrOCl2·8H2O as raw materials by the sol-gel method, LiCl was added as mineralizer to promote crystallization of zircon. The influences of molar ratio of Zr:Si, calcined time and calcined temperature on the synthesis of ZrSiO4 powder were investigated. XRD, SEM and TEM were used to characterize the powders. It was found that when the molar ratio of Zr:Si was 1:1.2, the calcined temperature was 1600°C and the calcined time was 4h, the high purity ZrSiO4 ultrafine powder was obtained. The ZrSiO4 formation began at 1300°C and when the gel was calcined at 1600°Cfor 4 h, the formation rate of ZrSiO4 was up to 95%. SEM and TEM studies reveal a homogeneous product with particle sizes on the order of 0.1-1μm. The IR emissivity of ultrafine ZrSiO4 is 0.892 at the whole wavelength range, and that is up to 0.951 at the wavelength range of 8-14 μm.


2009 ◽  
Vol 24 (8) ◽  
pp. 2541-2546 ◽  
Author(s):  
Eisuke Yokoyama ◽  
Hironobu Sakata ◽  
Moriaki Wakaki

ZrO2 thin films containing silver nanoparticles were prepared using the sol-gel method with Ag to Zr molar ratios [Ag]/[Zr] = 0.11, 0.25, 0.43, 0.67, 1.00, 1.50, and 2.33. After dip coating on glass substrate, coated films were annealed at 200 and 300 °C in air. X-ray diffraction peaks corresponding to crystalline Ag were observed, but a specific peak corresponding to ZrO2 was not observed. At the molar ratio [Ag]/[Zr] = 0.25, the particle size of Ag distributed broadly centered at 17 nm for an annealing temperature of 200 °C and at 25 nm for 300 °C. The films annealed in air at 200 °C showed an absorption band centered at 450 nm because of the silver surface plasmon resonance, whereas films heated at 300 °C in air caused a red shift of the absorption to 500 nm. The absorption peak was analyzed using the effective dielectric function of Ag-ZrO2 composite films modeled with the Maxwell-Garnett expression.


2007 ◽  
Vol 1007 ◽  
Author(s):  
Aracely Hernandez ◽  
Patricia Esquivel-Ferriño ◽  
Idalia Gomez ◽  
Lucia Cantu

ABSTRACTIn the present work, sol-gel method was used to incorporate in a ceramic material a non steroidal anti-inflammatory drug (piroxicam) as model drug. The incorporation of the drug in the SiO2 network was carried out at different sol-gel synthesis parameters, such as pH (3 and 5) and the alkoxide/water ratio (1:6 and 1:8). The biomaterial obtained was analyzed by thermal analysis TGA-DTA, infrared spectroscopy (FTIR), Scanning Electronic Microscopy (SEM) and X-ray diffraction (XRD); specific surface area and porosity were analyzed from nitrogen adsorption isotherm. Better drug incorporation into the material was achieved at the synthesis conditions of pH 5 and 1:6 alkoxide/water molar ratio.


2009 ◽  
Vol 409 ◽  
pp. 317-321 ◽  
Author(s):  
Helena Bruncková ◽  
Ľubomír Medvecký ◽  
Ján Mihalik

Lead iron niobate Pb(Fe0.5Nb0.5)O3 (PFN) ceramics were prepared using sol-gel synthesis by mixing acetates Pb and Fe with Nb-ethylene glycol-tartarate (Pechini) complex at 80°C, calcination of gels at 600°C and sintering at 1150°C for various times. The metastable pyrochlore phase Pb3Nb4O13 in stoichiometric precursor was partially decomposed to perovskite phase Pb(Fe0.5Nb0.5)O3 in ceramics sintered at temperature of 1150°C for 2, 4 and 6 hours. Excess of Pb in molar ratio (Pb:Fe:Nb = 1.2:0.5:0.5) caused the increase of the content of the perovskite phase (~50 vol.%) in nonstoichiometric PFN ceramics sintered at 1150°C for 6 hours while the decrease in perovskite phase content was found in stoichiometric PFN ceramics (~16 vol.%). In microstructures of PFN ceramics sintered at 1150°C for different times, the bimodal grain size distribution was observed with small spherical grains of perovskite phase and larger octahedral grains of pyrochlore phase. EDX analysis confirm that complex types of pyrochlore phases that differ in iron content were present in ceramics.


2015 ◽  
Vol 659 ◽  
pp. 121-126 ◽  
Author(s):  
Pat Sooksaen

Aluminium borate nanowhiskers with varying aspect ratio were synthesized via sol–gel synthesis. The morphology of aluminum borate (Al4B2O9 and Al18B4O33) nanowhiskers could be controlled by varying the aluminum to boron (Al:B) molar ratio in the sol–gel derived precursors. Sintering temperatures (850 and 1100°C) and sintering times (4 and 32 hours) also affected the phase composition and size of the nanowhiskers. Citric acid was also added in the sol–gel derived precursors as a surface stabilizer for obtaining uniform finely dispersed nanostructures. Fine nanowhiskers were obtained by the calcination at 850°C, whereas higher temperature of 1100°C led to thicker and longer nanowhiskers and became rod-like crystals. The morphology and phase composition were investigated by field emission scanning electron microscope and X-ray diffraction. Chemical bond vibrations in the synthesized nanowhiskers were investigated by Fourier-transform infrared spectroscopy.


2012 ◽  
Vol 9 (2) ◽  
pp. 659-668 ◽  
Author(s):  
A. Elsagh

The aim of the present research was optimization of practical conditions of the sol-gel synthesis. In so doing, silica particles were synthesized using sol-gel method and their size and morphology were investigated by use of SEM and TEM images. The effect of changing molar ratio of reactive including acids and silica pre-matter on the particles' morphology and size was studied. Also, acid type and silica pre-matter used in reaction was examined and the result product of the reaction were investigated in the presence of several acids and two types of silica pre-matter. The reaction time was studied as a very important factor in products' digestion phase which plays a significant role in determining particles’ size and rate of cracking products. Finally, in optimized conditions 50-80 nm diameter nanostructures were synthesized. These products can be used as drug delivery systems.


2011 ◽  
Vol 25 (21) ◽  
pp. 2823-2839 ◽  
Author(s):  
Y. VAHIDSHAD ◽  
H. ABDIZADEH ◽  
H. R. BAHARVANDI ◽  
M. AKBARI BASERI

A sol-gel method is investigated to synthesize CuO – ZrO 2 nanoparticles as catalyst for hydrogen production from methanol. Finer precursor nanoparticles give rise to larger specific areas in catalyst which result in a high hydrogen production. The effects of some critical process parameters on the sol-gel synthesis of CuO – ZrO 2 nanoparticles are studied. These parameters are affected on synthesis of CuO – ZrO 2 when it is prepared with sol-gel method. Particle size and distribution are considered as the results. The parameters including the effect of calcination temperature, aging temperature, nature and concentration of catalyst (acidic or basic conditions), H 2 O /precursor molar ratio, and chelating agent that have been identified as most important, are focused. It is found that the calcination temperature strongly influenced the morphology and interaction between the active species and support, and hence the structure and catalytic performance. Nature and concentration of catalyst ( pH value), chelating agent, ( H 2 O /precursor) molar ratio and also aging temperature have influence on the nanoparticles. Thus, by controlling these factors, it is possible to vary the morphology and properties of the sol-gel-derived inorganic network over wide ranges. Morphology, particle size and distribution, phase evaluation, structure, and chemical analysis of the products are investigated by SEM, TEM, DTA/TG, XRD and EDX respectively.


2013 ◽  
Vol 284-287 ◽  
pp. 41-45
Author(s):  
Chich Kuan Chen

The bioactive properties of hydroxyapatite [HA, Ca10(PO4)6(OH)2] have been demonstrated to be akin to osseous tissue, and provide quick fixation in prosthesis and orthopedics. In this study, sol-gel preparation of hydroxyapatite were arranged for Ca/P=1.67 molar ratio in calcium nitrate [Ca(NO)3.4H2O ] and triethylphosphate [TEP, C6H15PO4] and then dilute in the solvent of ethylene glycol mono-methyl ether [HOCH2CH2OCH3]. Consequently, sintering process was carried out at different temperature for various sintering time to materialize this inorganic polycrystalline phosphate. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) are applied to investigate the as dried amorphous and calcined hydroxyapatite. Results reveal calcinations at 1000oC prolonged for 30 minutes in air can exhibit crystalline hydroxyapatite.


2013 ◽  
Vol 465-466 ◽  
pp. 834-838
Author(s):  
A. Nurulhuda ◽  
Ali Rafidah ◽  
Arshad Azrina ◽  
Yacob Suhaila ◽  
I.S. Anwar ◽  
...  

Due to the disadvantageous of solid state in CaCu3Mn4O12 ceramic processing, the sol gel synthesis has been extensively studied to produce fine size of powder and better homogeneity at low processing temperature. This paper provides a summary to prove that the single phase of CaCu3Mn4O12 ceramic with high purity and characteristic is actually can be produced via sol gel synthesis at relative low temperature under pressureless sintering process. The stoichiometric CaCu3Mn4O12 powders were successfully prepared by the citric gel method with molar ratio of [citrates/metallic io; 1:2. The precursor gel formed was calcined and sintered at range 400 °C to 800 °C. A single-phase CaCu3Mn4O12 fairly well densified at relative low temperature under atmospheric sintering condition. Analysis has been done under XRD and FESEM. Result shown formation of CaCu3Mn4O12 started at 500 °C and was formed completely at 700 °C for 18h. FESEM results turned out that CaCu3Mn4O12 powder particle is submicron in size and highly agglomerates due to high calcinations temperature. Varying in sintering parameter is actually exhibit differences in phase formation, grain size and magnetic behavior.


2017 ◽  
Vol 3 (2) ◽  
pp. 47
Author(s):  
Wahyu Dian Laksanawati ◽  
Budhy Kurniawan

This paper reports the process and the results are supplemented by material microwave absorber characterisation \ce {La_{0.67}Sr_{0.33}Mn_{0.8}Ni_{0.2}O3} which has been synthesised by sol gel method. Results refinement of the XRD data showed that the material \ce {La_{0.67}Sr_{0.33}Mn_{0.8}Ni_{0.2}O3} have formed a single phase. From the results of using the software refinement High Score obtained crystal size on sample of 21.18 nm. Number of spin concentration in the sample at ESR test results showed a decrease when doping Ni increased, the area under the curve of absorption decreases as 388.718. This is due to the substitution of \ce {Ni^{2+}} ions \ce {Mn^{3+}} ions thus inhibiting electron hopping of electrons $\mathrm{e_g}$ (\ce {Mn^{3+}} ion) to $\mathrm{t_{2g}}$ (\ce {Mn^{4+}} ion) in the mechanism of double exchange so that the spin of the electrons will $\mathrm{t_{2g}}$ antiparallel. Competition between ferromagnetic properties with antiferromagnetic spin make will change the direction so that the sample magnetisation will decrease and the magnetic moments become random. ESR results are used to confirm the results of the VNA. Microwave absorption ability is indicated by the value of reflection loss on the sample is $-66.67$ dB.


Sign in / Sign up

Export Citation Format

Share Document