scholarly journals Removal of Chromium (VI) cation metal using Poly (N-vinyl-2-pyrrolidone)/Magnetite nanocomposite from aqueous media

2017 ◽  
Vol 13 (10) ◽  
pp. 5886-5891
Author(s):  
Padmalaya G ◽  
Sreeja BS ◽  
Radha S ◽  
Raamdheep G ◽  
Saranya J

Groundwater contamination with heavy metals is considered as serious environmental hazard that affect the human society. Nano adsorbents incorporating magnetite nanoparticles provides promising alternative to facilitate removal of heavy metal ions from wastewater. The present work focuses on removal of chromium (VI) cationic metals from aqueous media using Polyvinyl Pyrrolidone (PVP)/Magnetite (Fe3O4) Nanocomposite (MNC). Magnetite nanoparticles are synthesized using chemical co-precipitation and grafted using polyvinyl pyrrolidone to form a magnetite nanocomposite. MNC were characterized with X-ray diffraction (XRD) and Infrared absorption spectrum (FT-IR) studies to affirm the formation and presence of polymeric functional groups of PVP/Magnetite nanocomposite. Batch experiments are carried out at exclusive concentration intervals to study about the adsorption efficiency of MNC on chromium (VI) cationic metal using U-Vis spectroscopy. The results obtained through adsorption studies shows the synthesized PVP/Magnetite nanocomposites has a removal efficiency of 94%.

2014 ◽  
Vol 17 (3) ◽  
pp. 41-51
Author(s):  
Thanh Trung Bui ◽  
Van Hung Pham ◽  
Hai Hoang Tran

Magnetite nanoparticles were synthesized by co-precipitation of Fe2+ and Fe3+ with NH3.H20, and then 3- aminopropyltriethoxysilane (APTES) was coated on the magnetite nanoparticles by silanization reaction to achieve Fe3O4/APTES nanostructures. After modified by APTES, the nanostructures were activated by glutaraldehyde (GA) to obtain functional groups on the nanostructures surface. Human Serum Albumin (HSA) was immobilised on the Fe3O4/APTES and Fe3O4/APTES/GA nanostructures. The morphology and properties of the nanoparticles were characterized by transmission electron microscopy (TEM), Xray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectroscopy (FTIR), UV–vis spectroscopy and thermal gravimetric analysis (TGA). The HSA binding efficiency was estimated by the Bradford method.


2021 ◽  
Vol 5 (2) ◽  
pp. 42
Author(s):  
Victoria K. Elmes ◽  
Nichola J. Coleman

Construction and demolition activities generate approximately two thirds of the world’s waste, with concrete-based demolition material accounting for the largest proportion. Primary aggregates are recovered and reused, although the cement-rich fine fraction is underutilised. In this study, single metal batch sorption experiments confirmed that crushed concrete fines (CCF) are an effective sorbent for the maximum exclusion of 45.2 mg g−1 Cd2+, 38.4 mg g−1 Co2+ and 56.0 mg g−1 MoO42− ions from aqueous media. The principal mechanisms of sorption were determined, by scanning electron microscopy of the metal-laden CCF, to be co-precipitation with Ca2+ ions released from the cement to form solubility limiting phases. The removal of Co2+ and MoO42− ions followed a zero-order reaction and that of Cd2+ was best described by a pseudo-second-order model. The Langmuir model provided the most appropriate description of the steady state immobilisation of Cd2+ and Co2+, whereas the removal of MoO42− conformed to the Freundlich isotherm. Long equilibration times (>120 h), loose floc formation and high pH are likely to limit the use of CCF in many conventional wastewater treatment applications; although, these properties could be usefully exploited in reactive barriers for the management of contaminated soils, sediments and groundwater.


2014 ◽  
Vol 40 (1) ◽  
pp. 1519-1524 ◽  
Author(s):  
Lazhen Shen ◽  
Yongsheng Qiao ◽  
Yong Guo ◽  
Shuangming Meng ◽  
Guochen Yang ◽  
...  

2016 ◽  
Vol 675-676 ◽  
pp. 69-72
Author(s):  
Krisana Chongsri ◽  
Wanichaya Mekprasart ◽  
Wisanu Pecharapa

In this work, we reported the preparation of F-doped ZnO nanoparticles by facile precipitation process using zinc nitrate and ammonium fluoride as starting precursors for Zn and F, respectively dissolved in deionized water. The precursor solution was prepared at various fluoride composition ranging from 1-5 wt%. The as-precipitated powders were calcined at different temperature from 500 °C to 700 °C for 2 h. Effect of calcination temperature and fluoride concentration on structural, morphologies, optical and electrical properties were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis spectroscopy, respectively. XRD results indicated the complete formation of hexagonal wurtzite structure of ZnO. SEM micrographs showed the agglomeration for each sample that noticeably influenced by fluoride content.


2012 ◽  
Vol 531 ◽  
pp. 219-222
Author(s):  
Li Hua Shen ◽  
Ting Shang ◽  
Jun Zhou ◽  
Dong Wang ◽  
Yu Han ◽  
...  

Extremely small-sized superparamagnetic magnetite nanoparticles of 3Cit). The resulting Cit-coated magnetite nanoparticles exhibited long-term colloidal stability in aqueous media without any surface modification. Regarding the magnetic properties, the nanoparticles were superparamagnetic at room temperature, and might be the potential candidate for MRI contrast agents.


2021 ◽  
Vol 11 (22) ◽  
pp. 11075
Author(s):  
Angela Spoială ◽  
Cornelia-Ioana Ilie ◽  
Luminița Narcisa Crăciun ◽  
Denisa Ficai ◽  
Anton Ficai ◽  
...  

The interconnection of nanotechnology and medicine could lead to improved materials, offering a better quality of life and new opportunities for biomedical applications, moving from research to clinical applications. Magnetite nanoparticles are interesting magnetic nanomaterials because of the property-depending methods chosen for their synthesis. Magnetite nanoparticles can be coated with various materials, resulting in “core/shell” magnetic structures with tunable properties. To synthesize promising materials with promising implications for biomedical applications, the researchers functionalized magnetite nanoparticles with silica and, thanks to the presence of silanol groups, the functionality, biocompatibility, and hydrophilicity were improved. This review highlights the most important synthesis methods for silica-coated with magnetite nanoparticles. From the presented methods, the most used was the Stöber method; there are also other syntheses presented in the review, such as co-precipitation, sol-gel, thermal decomposition, and the hydrothermal method. The second part of the review presents the main applications of magnetite-silica core/shell nanostructures. Magnetite-silica core/shell nanostructures have promising biomedical applications in magnetic resonance imaging (MRI) as a contrast agent, hyperthermia, drug delivery systems, and selective cancer therapy but also in developing magnetic micro devices.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Muhammad Nur Iman Amir ◽  
Nurhidayatullaili Muhd Julkaplia ◽  
Saba Afzal

Titanium dioxide (TiO2) nanoparticles are used enormously for treating wastewater pollutants due to their unique optoelectronic and physiochemical properties. Though, wide bandgap, fast recombination of e- - h+ pair, and low adsorption toward organic pollutants limit their applications. However, immobilization of TiO2 on Chitosan (Cs) is believed to overcome these limitations. Cs with plenty of NH2 and OH groups in their structure are expected to enhance their adsorption and consequently photocatalytic performance. A series of TiO2/Cs photocatalysts have been prepared using a chemical co-precipitation method. Amount of TiO2 is varied from 0.25, 0.50, and 0.75 to 1.0 g. The photocatalysts are characterized by using FESEM-EDS, CHNS Elemental Analyser TGA, FTIR, and UV-Vis spectroscopy. These characterization results revealed the formation of a good interface between TiO2 and Cs matrix. Increasing TiO2 content significantly increased the thermal stability of the photocatalyst up to 600ᵒC. The photocatalytic activity of Cs/TiO2 is observed under UV light which is found to be more significant with 1:1(TiO2: Cs) composition for the degradation of methylene blue dye at 85 % and be maintained up to 4 numbers of cycles. This demonstrated open new insight into the application of Cs as a support materials and adsorption agent in TiO2 based photocatalyst system


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1647 ◽  
Author(s):  
Mikhailova ◽  
Senchukova ◽  
Lezov ◽  
Gubarev ◽  
Trützschler ◽  
...  

The ability of aminoethyl methacrylate cationic copolymers to stabilize silver nanoparticles in water was investigated. Sodium borohydride (NaBH4) was employed as a reducing agent for the preparation of silver nanoparticles. The objects were studied by ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering (DLS), analytical ultracentrifugation (AUC) and scanning electron microscopy (SEM). Formation of nanoparticles in different conditions was investigated by varying ratios between components (silver salt, reducing agent and polymer) and molar masses of copolymers. As a result, we were successful in obtaining nanoparticles with a relatively narrow size distribution that were stable for more than six months. Consistent information on nanoparticle size was obtained. The holding capacity of the copolymer was studied.


Sign in / Sign up

Export Citation Format

Share Document