scholarly journals PROPAGATION OF Lachenalia CULTIVARS FROM LEAF CUTTINGS

2019 ◽  
Vol 18 (1) ◽  
pp. 189-195
Author(s):  
Anna Kapczyńska

Lachenalia is a poorly known genus of ornamental bulbous plants from South Africa with a huge floricultural potential. The paper discusses in vivo multiplication with leaf cuttings of Lachenalia cv. ‘Namakwa’, ‘Romaud’, ‘Ronina’ and ‘Rupert’. Mature leaves were collected from non-flowering donor plants. Each leaf was halved to make proximal and distal leaf cuttings. ‘Ronina’ distal leaf cuttings produced the lowest number of bulblets (5.7 per cutting), while ‘Namakwa’ proximal leaf cuttings turned out the most productive (10.5 bulblets per cutting). The bulblets produced by cv. ‘Namakwa’ distal leaf cuttings were the lightest (0.3 g per bulblet), and those formed on cv. ‘Ronina’ proximal leaf cuttings were the heaviest (0.9 g per bulblet). In general, the weight of individual bulblets ranged from 0.1 to 1.2 g. Irrespective of the cutting type, the leaves of cv. ‘Namakwa’ produced the greatest number of bulblets, and the leaves of ‘Ronina’ yielded the heaviest bulblets. With no dependence on their genotype, proximal leaf cuttings were advantageous in terms of total number of generated bulblets and their quality (weight, diameter).

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dan Hou ◽  
Ling Li ◽  
Tengfei Ma ◽  
Jialong Pei ◽  
Zhongyu Zhao ◽  
...  

AbstractBamboo is known for its edible shoots and beautiful texture and has considerable economic and ornamental value. Unique among traditional flowering plants, many bamboo plants undergo extensive synchronized flowering followed by large-scale death, seriously affecting the productivity and application of bamboo forests. To date, the molecular mechanism of bamboo flowering characteristics has remained unknown. In this study, a SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)-like gene, BoMADS50, was identified from Bambusa oldhamii. BoMADS50 was highly expressed in mature leaves and the floral primordium formation period during B. oldhamii flowering and overexpression of BoMADS50 caused early flowering in transgenic rice. Moreover, BoMADS50 could interact with APETALA1/FRUITFULL (AP1/FUL)-like proteins (BoMADS14-1/2, BoMADS15-1/2) in vivo, and the expression of BoMADS50 was significantly promoted by BoMADS14-1, further indicating a synergistic effect between BoMADS50 and BoAP1/FUL-like proteins in regulating B. oldhamii flowering. We also identified four additional transcripts of BoMADS50 (BoMADS50-1/2/3/4) with different nucleotide variations. Although the protein-CDS were polymorphic, they had flowering activation functions similar to those of BoMADS50. Yeast one-hybrid and transient expression assays subsequently showed that both BoMADS50 and BoMADS50-1 bind to the promoter fragment of itself and the SHORT VEGETATIVE PHASE (SVP)-like gene BoSVP, but only BoMADS50-1 can positively induce their transcription. Therefore, nucleotide variations likely endow BoMADS50-1 with strong regulatory activity. Thus, BoMADS50 and BoMADS50-1/2/3/4 are probably important positive flowering regulators in B. oldhamii. Moreover, the functional conservatism and specificity of BoMADS50 and BoMADS50-1 might be related to the synchronized and sporadic flowering characteristics of B. oldhamii.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 681
Author(s):  
Gugulethu P. Khumalo ◽  
Nicholas J. Sadgrove ◽  
Sandy F. Van Vuuren ◽  
Ben-Erik Van Wyk

Indigenous trade of medicinal plants in South Africa is a multi-million-rand industry and is still highly relevant in terms of primary health care. The purpose of this study was to identify today’s most traded medicinal barks, traditionally and contemporaneously used for dermatological, gastrointestinal, and respiratory tract infections; then, to investigate the antimicrobial activity and toxicity of the respective extracts and interpret outcomes in light of pharmacokinetics. Thirty-one popularly traded medicinal barks were purchased from the Faraday and Kwa Mai-Mai markets in Johannesburg, South Africa. Information on the medicinal uses of bark-based medicines in modern commerce was recorded from randomly selected traders. The minimum inhibitory concentration (MIC) method was used for antimicrobial screening, and brine shrimp lethality was used to determine toxicity. New medicinal uses were recorded for 14 bark species. Plants demonstrating some broad-spectrum activities against tested bacteria include Elaeodendron transvaalense, Erythrina lysistemon, Garcinia livingstonei, Pterocelastrus rostratus, Rapanea melanophloeos, Schotia brachypetala, Sclerocarya birrea, and Ziziphus mucronata. The lowest MIC value of 0.004 mg/mL was observed against Staphylococcus epidermidis for a dichloromethane bark extract of E. lysistemon. The tested medicinal barks were shown to be non-toxic against the Artemia nauplii (brine shrimp) bioassay, except for a methanol extract from Trichilia emetica (69.52% mortality). Bacterial inhibition of bark extracts with minimal associated toxicity is consistent with the safety and valuable use of medicinal barks for local muthi market customers. Antimicrobial outcomes against skin and gastrointestinal pathogens are feasible because mere contact-inhibition is required in vivo; however, MIC values against respiratory pathogens require further explaining from a pharmacokinetics or pharmacodynamics perspective, particularly for ingested rather than smoked therapies.


Planta Medica ◽  
2018 ◽  
Vol 85 (04) ◽  
pp. 312-334 ◽  
Author(s):  
Fatai Balogun ◽  
Anofi Ashafa

AbstractSouth Africa contains 9% of the worldʼs higher plants, and despite its rich biodiversity, it has one of the highest prevalence of hypertension in Africa. This review provides information on medicinal plants embraced in South Africa for hypertension management, with the aim of reporting pharmacological information on the indigenous use of these plants as antihypertensives. This review not only focuses on the activity of antihypertensive medicinal plants but also reports some of its phytochemical constituents and other ethnopharmacological and therapeutic properties. Information obtained from scientific and or unpublished databases such as Science Direct, PubMed, SciFinder, JSTOR, Google Scholar, Web of Science, and various books revealed 117 documented antihypertensive plant species from 50 families. Interestingly, Asteraceae topped the list with 16 species, followed by Fabaceae with 8 species; however, only 25% of all plant species have demonstrated antihypertensive effects originating from both in vitro and in vivo studies, lending credence to their folkloric use. Only 11 plant species reportedly possess antihypertensive properties in animal models, with very few species subjected to analytical processes to reveal the identity of their bioactive antihypertensive compounds. In this review, we hope to encourage researchers and global research institutions (universities, agricultural research councils, and medical research councils), particularly those showing an interest in natural products, for the need for concerted efforts to undertake more studies aimed at revealing the untapped potential of these plants. These studies are very important for the development of new pharmaceuticals of natural origin useful for the management of hypertension.


1982 ◽  
Vol 60 (7) ◽  
pp. 1054-1059 ◽  
Author(s):  
John A. Webb

An enzyme synthesizing galactinol, UDP-D-galactose:myo-inositol-1-α-D-galactosyl transferase (galactinol synthase), has been isolated and partially purified from mature leaves of Cucurbita pepo. The enzyme showed optimal activity between pH 7.5 and 8.0 and required Mn2+ and the presence throughout isolation, storage, and assay of a sulfhydryl protectant (β-mercaptoethanol). EDTA was completely inhibitory. From a range of metal ions only Mg2+ partially replaced Mn2+, while Co2+, Zn2+, Cu2+, and Ni2+ were inhibitory. The uridine nucleotides and UDP-glucose were from 40 to 80% inhibitory and probably constitute part of the in vivo control system. High concentrations of galactose, melibiose, and xylose were partially inhibitory. The enzyme appeared highly specific for myo-inositol and showed no ability for galactosyl transfer to any other naturally occurring sugar or sugar alcohol. Some reactivity was obtained with the isomeric scyllo-inositol but the product was not identified. A range of other sugar nucleotides were unreactive.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2759 ◽  
Author(s):  
Samuel Odeyemi ◽  
Graeme Bradley

The use of medicinal plants for the management of diabetes mellitus is on the rise in the developing countries, including South Africa. There is increasing scientific evidence that supports the claims by the traditional healers. In this review, we compare the families of previously reported anti-diabetic plants in the Eastern Cape by rating the anti-diabetic activity, mode of action and also highlight their therapeutic potentials based on the available evidence on their pharmacology and toxicity. Forty-five plants mentioned in ethnobotanical surveys were subjected to a comprehensive literature search in the available electronic databases such as PubMed, ScienceDirect, Google Scholar and Elsevier, by using “plant name” and “family” as the keywords for the primary searches to determine the plants that have been scientifically investigated for anti-diabetic activity. The search returned 25 families with Asteraceae highly reported, followed by Asphodelaceae and Alliaceae. Most of the plants have been studied for their anti-diabetic potentials in vivo and/or in vitro, with most of the plants having a higher percentage of insulin release and inhibition against carbohydrate digesting enzymes as compared with insulin mimetic and peripheral glucose uptake. Almost all the investigated plants also inhibit oxidative stress as part of their hypoglycemic activity with less toxicity. However, the isolation of their bioactive molecules is still lacking. This review provides a resource to enable thorough assessments of the therapeutic profiles of available medicinal plants used for the management of diabetes in the Eastern Cape, South Africa. Further studies such as the identification of the active ingredients of potent plants still need to be carried out; this may lead to new molecules in drug discovery and development.


2006 ◽  
Vol 84 (5) ◽  
pp. 750-758 ◽  
Author(s):  
Alan R. Wood ◽  
J. Ginns

Acacia cyclops A. Cunn. ex G. Don (Fabaceae, Mimosoideae), originating from Western Australia, is a serious environmental weed in South Africa. A dieback disease of A. cyclops occurring in South Africa is described, and a fungus herein named Psuedolagarobasidium acaciicola Ginns sp.nov. (Basidiomycetes, Polyporales, Hyphodermataceae) was consistently isolated from diseased roots of A. cyclops trees showing early dieback symptoms. Isolates of P. acaciicola caused 100% mortality in pathogenicity screening tests using seedlings of A. cyclops. Saplings of A. cyclops were inoculated with one isolate of P. acaciicola, and all plants were killed within 2–3 months. No control plants died. Psuedolagarobasidium acaciicola was reisolated from all inoculated plants that died. Trees growing in the field were inoculated at two sites on two occasions. Most inoculated trees died within 2 years, whereas no control plants died. Eventually P. acaciicola fruited in vitro and in vivo allowing the basidiomes and cultures to be described. This fungus has potential to be developed as a bioherbicide to aid in the control of this serious environmental weed.


Author(s):  
A. Kidanemariam ◽  
J. Gouws ◽  
M. Van Vuuren ◽  
B. Gummow

The in vitro activities of enrofloxacin, florfenicol, oxytetracycline and spiramycin were determined against field isolates of Mycoplasma mycoides mycoides large colony (MmmLC) by means of the broth microdilution technique. The minimum inhibitory concentrations (MICs) of these antimicrobial drugs were determined for a representative number of 10 isolates and 1 type strain. The susceptibility of Arcanobacterium pyogenes to enrofloxacin, oxytetracycline and tilmicosin was determined by means of an agar disk diffusion test. The MICs of enrofloxacin, florfenicol, oxytetracycline and spiramycin were within the ranges of 0.125-0.5, 1.0-2.0, 2.0-4.0 and 4.0-8.0 µg / m , respectively. This study has shown that resistance of MmmLC against enrofloxacin, florfenicol, oxytetracycline and spiramycin was negligible. All the field strains of A. pyogenes that were tested were susceptible to enrofloxacin, oxytetracycline and tilmicosin with mean inhibition zones of 30.6, 42.3 and 35.8mm, respectively. Although there is lack of data on in vivo efficacy and in vitro MIC or inhibition zone diameter breakpoints of these antimicrobial drugs for MmmLC, the MIC results indicate that these 4 classes of antimicrobial drugs should be effective in the treatment of ulcerative balanitis and vulvitis in sheep in South Africa.


2002 ◽  
Vol 29 (12) ◽  
pp. 1491 ◽  
Author(s):  
Karl H. Mühling ◽  
André Läuchli

Salinity may reduce plant growth via Na+-toxicity symptoms in mature leaves after long-term exposure. It has been suggested by other authors that Na+ accumulates in the leaf apoplast and leads to dehydration of leaves, wilting, and finally to death of these leaves. Two methods were employed to determine the Na+ concentration in the leaf apoplast of salt-tolerant cotton plants under salinity. The ratio imaging of sodium-binding benzofuran isophthalate (SBFI) fluorescence was used to detect in vivo concentration changes and gradients of Na+ within the leaf apoplast under salinity stress, and results were compared with the infiltration–centrifugation method. A�significant increase in Na+ concentration was found in the leaf apoplast under salinity (75 mM NaCl), but no further significant increase was determined when NaCl supply was increased from 75 to 150 mM. Both methods revealed that Na+ concentrations remained relatively low, and thus could not be responsible for the decline in yield under salinity. The ratio images showed changes in Na+ concentration and gradients within the leaf apoplast under salt stress, and demonstrated the validity of the method. However, SBFI fluorescence was also influenced by pH, proteins and salt-induced compatible osmolytes.


2016 ◽  
Vol 72 (1) ◽  
Author(s):  
Desmond Mathye ◽  
Carina Eksteen

Purpose: To investigate the role that rehabilitation professionals play in the rehabilitation of children with disabilities in the rural and under-resourced community of Giyani in South Africa.Method: A qualitative, exploratory and descriptive approach was used. Semi-structured face-to-face interviews were used to collect data from a convenient sample of eight rehabilitation professionals. Data were transcribed verbatim by two trained students and verified by the main researcher. An inductive approach to qualitative data analysis was used. In vivo and open coding were used to generate codes.Results: Analysis of data resulted in 21 codes, 9 subcategories, 5 categories and 1 theme. The role of rehabilitation professionals was described in terms of the five categories which are to examine newborn babies and children at risk, support caregivers of children with disabilities, impart skills training for caregivers of children with disabilities, rehabilitate children with disabilities and conduct follow-ups in communities where the children with disabilities reside.Conclusion: The role that rehabilitation professionals play in the rural and under-resourced community of Giyani in South Africa is similar to the role played in high-income countries. The role that rehabilitation professionals play is not only focused on the child but also on the family.


2021 ◽  
Author(s):  
Jaganathan Subramani ◽  
Namir Shaabani ◽  
Dhwani Shetty ◽  
Haiwa Wu ◽  
Sunkuk Kwon ◽  
...  

ABSTRACTThe identification of a vaccination candidate against COVID-19 providing protecting activity against emerging SARS-COV-2 variants remains challenging. Here, we report protection activity against a spectrum of SARS-COV-2 and variants by immunization with protein-based recombinant RBD-C-tag administered with aluminum-phosphate adjuvant intramuscularly. Immunization of C57BL/6 mice with RBD-C-tag resulted in the in vivo production of IgG antibodies recognizing the immune-critical spike protein of the SARS-COV-2 virus as well as the SARS-COV-2 variants alpha (“United Kingdom”), beta (“South Africa”), gamma (“Brazil/Japan”), and delta (“India”) as well as wt-spike protein. RBD-C-tag immunization led to a desired Th1 polarization of CD4 T cells producing IFNγ. Importantly, RBD-C-tag immunization educated IgG production delivers antibodies that exert neutralizing activity against the highly transmissible SARS-COV-2 virus strains “Washington”, “South Africa” (beta), and “India” (delta) as determined by conservative infection protection experiments in vitro. Hence, the protein-based recombinant RBD-C-tag is considered a promising vaccination candidate against COVID-19 and a broad range of emerging SARS-COV-2 virus variants.


Sign in / Sign up

Export Citation Format

Share Document