scholarly journals Mite species (Acari) on blackberry cultivars in organic and conventional farms in Florida and Georgia, USA

Acarologia ◽  
2021 ◽  
Vol 61 (1) ◽  
pp. 31-45
Author(s):  
Rana Akyazı ◽  
Cal Welbourn ◽  
Oscar E. Liburd

This study was carried out to determine mite species on blackberry plants (Rubus spp. (Rosaceae)) in Florida and Georgia, USA, and differences in mite species between organic and conventional blackberry plantings in the area sampled. Surveys were conducted in organic and conventional commercial blackberry plantings from June to October 2016. Leaf samples were collected monthly from nine different blackberry cultivars including ‘Arapaho’, ‘Choctaw’, ‘Freedom’, ‘Kiowa’, ‘Natchez’, ‘Navaho’, ‘Osage’, ‘Ouachita’, and Von. Approximately 20 leaves per blackberry plant were taken. Twenty mite species (a total of 152 mite specimens) belonging to 7 families including Phytoseiidae (9 species), Ascidae (1), Cheyletidae (1), Erythraeidae (1), Stigmaeidae (1), Tetranychidae (4) and Tarsonemidae (3) were identified during the study. It was found that the abundance of predatory mites collected in organic farms was over 2-fold higher (105) than in conventional farms (47), which may be related to pesticide use on these commercial farms. Future surveys should provide a list of predatory species, which may hold potential for biological control of economically important pest mites.

Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 180
Author(s):  
Stefan Möth ◽  
Andreas Walzer ◽  
Markus Redl ◽  
Božana Petrović ◽  
Christoph Hoffmann ◽  
...  

Viticultural practices and landscape composition are the main drivers influencing biological pest control in vineyards. Predatory mites, mainly phytoseiid (Phytoseiidae) and tydeoid mites (Tydeidae), are important to control phytophagous mites (Tetranychidae and Eriophyidae) on vines. In the absence of arthropod prey, pollen is an important food source for predatory mites. In 32 paired vineyards located in Burgenland/Austria, we examined the effect of landscape composition, management type (organic/integrated), pesticide use, and cover crop diversity of the inter-row on the densities of phytoseiid, tydeoid, and phytophagous mites. In addition, we sampled pollen on vine leaves. Typhlodromus pyri Scheuten was the main phytoseiid mite species and Tydeus goetzi Schruft the main tydeoid species. Interestingly, the area-related acute pesticide toxicity loading was higher in organic than in integrated vineyards. The densities of phytoseiid and tydeoid mites was higher in integrated vineyards and in vineyards with spontaneous vegetation. Their population also profited from an increased viticultural area at the landscape scale. Eriophyoid mite densities were extremely low across all vineyards and spider mites were absent. Biological pest control of phytophagous mites benefits from less intensive pesticide use and spontaneous vegetation cover in vineyard inter-rows, which should be considered in agri-environmental schemes.


2004 ◽  
Vol 94 (2) ◽  
pp. 159-167 ◽  
Author(s):  
S. Jess ◽  
J.F.W. Bingham

AbstractIn small-scale experiments, the predatory mites, Hypoaspis aculeifer (Canestrini) and H. miles Berlese, applied at 700 mites m−2, and the entomopathogenic nematode, Steinernema feltiae (Filipjev) applied at 3 × 10−6 nematodes m−2 controlled sciarids and phorids in mushroom compost and casing substrates. For both mite species, earliest application to the growing substrate following sciarid infestation reduced sciarid emergence. In contrast, later application of each biological control agent provided more effective control of phorid emergence. The behaviour of adult mites suggested that H. aculeifer were more positively geotactic than H. miles although both species could penetrate compost and casing substrates to a depth of 2–12 cm. A majority of S. feltiae nematodes resided at a depth of 2–4 cm in both substrate types. Independent application of H. aculeifer provided more comprehensive control of sciarids and phorids than the other biological agents studied, owing to its better dispersal within compost and casing, and ability to attack larvae of differing ages.


Zootaxa ◽  
2021 ◽  
Vol 4927 (3) ◽  
pp. 301-330
Author(s):  
JHIH-RONG LIAO ◽  
CHYI-CHEN HO ◽  
CHIUN-CHENG KO

Global trade has increased the invasion risk of exotic organisms and damaged agricultural and natural ecosystems. The Bureau of Animal and Plant Health Inspection and Quarantine (BAPHIQ) handles quarantine services of animal- and plant-associated pests and diseases in Taiwan. The predatory mite family Phytoseiidae (Acari: Mesostigmata) is a well-known group due to the potential use of certain species as biocontrol agents for small phytophagous pests. Some species are available in commercial markets and frequently used in biological control in many agricultural systems, especially in greenhouse crops. However, exotic biological control agents may interfere with natural or naturalised populations of predatory mites and they may threaten indigenous populations via intraguild predation. The present study aims to provide a checklist of phytoseiid mite species found in plant quarantine from 2006–2013. Twenty-five species belonging to two subfamilies and eight genera were found in samples imported to Taiwan from twelve countries, including one new species Typhlodromus (Anthoseius) ueckermanni sp. nov. from South Africa. The checklist provides distribution, remarks, and also an identification key for all species. 


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1266
Author(s):  
Charles Benbrook ◽  
Susan Kegley ◽  
Brian Baker

Organic agriculture is a production system that relies on prevention, ecological processes, biodiversity, mechanical processes, and natural cycles to control pests and maintain productivity. Pesticide use is generally limited or absent in organic agroecosystems, in contrast with non-organic (conventional) production systems that primarily rely on pesticides for crop protection. Significant differences in pesticide use between the two production systems markedly alter the relative dietary exposure and risk levels and the environmental impacts of pesticides. Data are presented on pesticide use on organic and non-organic farms for all crops and selected horticultural crops. The relative dietary risks that are posed by organic and non-organic food, with a focus on fresh produce, are also presented and compared. The results support the notion that organic farms apply pesticides far less intensively than conventional farms, in part because, over time on well-managed organic farms, pest pressure falls when compared to the levels on nearby conventional farms growing the same crops. Biopesticides are the predominant pesticides used in organic production, which work by a non-toxic mode of action, and pose minimal risks to human health and the environment. Consequently, eating organic food, especially fruits and vegetables, can largely eliminate the risks posed by pesticide dietary exposure. We recommend ways to lower the pesticide risks by increased adoption of organic farming practices and highlight options along organic food supply chains to further reduce pesticide use, exposures, and adverse worker and environmental impacts.


2015 ◽  
Vol 68 ◽  
pp. 446-446
Author(s):  
D.J. Wilson ◽  
P.J. Gerard

Spiny snout mite (Neomolgus capillatus) is a potential biocontrol agent for clover flea (Sminthurus viridis) a white clover pest on dairy farms in warmer and wetter parts of New Zealand In the 1990s this mite was introduced from Brittany France into Tasmania for clover flea control Results during the release programme were highly promising and subsequent anecdotal farmer reports indicate widespread decreases in damage As N capillatus is a predatory mite and already known to attack nontarget organisms habitat specificity will determine whether it could be introduced into New Zealand without risk to native insects To assess this pastures on nine of the original Tasmanian release farms and adjacent nontarget habitats ranging from bush wetlands eucalypt stands to sand dune country were sampled in April 2014 Litter samples were collected heat extracted and mite species identified Neomolgus capillatus was found at effective densities in pastures that had good clover cover Where present it displaced Bdellodes spp mites that are ineffective against clover flea No N capillatus were found in the nontarget habitats all of which lacked clover and contained other predatory mites including Bdellodes spp Therefore the preference by N capillatus for lush pastures makes it an excellent prospect for introduction as a biocontrol agent into clover flea prone regions of New Zealand


2006 ◽  
Vol 18 ◽  
pp. 256-263 ◽  
Author(s):  
C. Stopes ◽  
E.I. Lord ◽  
L. Philipps ◽  
L. Woodward

Author(s):  
Mércia Elias Duarte ◽  
Peterson Rodrigo Demite ◽  
Renata Santos De Mendonça ◽  
Miguel Michereff-filho ◽  
Maria Luiza Santa Cruz De Mesquita Alves ◽  
...  

Predatory mites represent important biological control agents and those belonging to the Phytoseiidae family are the most promising for the control of phytophagous mites and small insects. The control of key pests of tomato and other solanaceous crops, highlighting phytophagous mites, has been a challenge and the biological control constitutes a promising strategy. Prospecting predatory mites in wild host plants, natural environments as well as in agroecosystems is relevant because these non-crop and crop areas can serve as reservoirs for promising species for biological control programs. This study aimed to know the Phytoseiidae fauna associated with wild and cultivated solanaceous plants in a poorly prospected area in Brazil, the Central-West Region. A detailed taxonomic identification of phytoseiid mites was conducted, and the most important morphological traits are presented for each species. In addition, associated phytophagous mites mainly belonging to the Tetranychidae, Tenuipalpidae and Eriophyoidea were identified. Surveys were carried out in 23 species of solanaceous collected in the Distrito Federal (12 areas) and Goiás State (1 area), from February 2017 to January 2018. Nineteen species of predators belonging to ten genera were recorded: Amblyseius (2 species), Euseius (3), Galendromus (1), Iphiseiodes (1), Neoseiulus (3), Paraphytoseius (1), Phytoseius (3), Proprioseiopsis (2), Typhlodromalus (2, one probably new to science) and Typhlodromips (1). Solanum lycocarpum was the solanaceous that harbored the highest richness (11 species), as well as the one with the highest abundance of phytoseiids (250 specimens). Typhlodromalus aripo was the most common species, being the most abundant (423 specimens; 32%) and registered on the largest number of hosts (14). Many of phytoseiid species found present morphological traits that facilitate their occurrence in leaves with trichomes, as in the case of tomato and other cultivated solanaceous. These traits and the association between predators and phytophagous mites may indicate that these species are promising for biological control programms. Thus, extensive studies to assess the efficiency of the identified predatory mites to control key solanaceous pests are required.


Author(s):  
Fernando Teruhiko Hata ◽  
Pedro Henrique Togni ◽  
Maurício Ursi Ventura ◽  
José Eduardo Poloni da Silva ◽  
Nilson Zacarias Ferreira ◽  
...  

Abstract Non-crop plant diversity plays a fundamental role in the conservation of predatory mite (PM) and can be proposed as a banker plant system (BPS). BPSs provide plants that host natural enemies in greenhouses or field crops and may improve the efficiency of biological control. The aim of this study was to investigate if a diverse plant composition could be a suitable BPS for PMs in strawberry crops. A plant inventory characterized 22 species of non-crop plants harboring PMs. The most abundant PMs, in decreasing order, were Neoseiulus californicus, Neoseiulus anonymus, Euseius citrifolius, and Euseius concordis. PMs were randomly distributed among plants. We also found specific associations of Phytoseiidae species and phytophagous or generalist mites on plants. Due to this, four species were deemed suitable as banker plants: Capsicum sp., Leonurus sibiricus, Solanum americanum, and Urochloa mutica. Moreover, these plants combined a high PMs density and a low occurrence or absence of pest-mites. This study suggests shifting the traditional view that BPSs are composed of a limited number of species to use plant assemblages. This contributes to both conservation and augmentative biological control.


2019 ◽  
Vol 24 (3) ◽  
pp. 508
Author(s):  
Wendy Lam ◽  
Quentin Paynter ◽  
Zhi-Qiang Zhang

Gorse, Ulex europaeus, is an invasive weed that has serious agricultural, economic and ecological impacts. Although various biological control agents have been released in New Zealand, these have showed no noticeable impact on gorse populations. One such agent, Sericothrips staphylinus, was introduced to New Zealand in 1990 and although laboratory impact studies indicated it was a highly promising gorse biological control agent, it has not been as effective as was hoped. We hypothesized this was due to predation by natural enemies. This study investigated the predation and oviposition rates of three phytoseiid mites (Amblydromalus limonicus, Amblyseius herbicolus, and Neoseiulus cucumeris) that have been found on gorse plants in New Zealand on three S. staphylinus stages (1st instar larvae, 2nd instar larvae, and prepupa) in both choice and non-choice conditions. In non-choice conditions, A. limonicus had the highest predation and oviposition rate across all three immature stages, and N. cucumeris had the lowest. Amblydromalus  limonicus, A. herbicolus, and N. cucumeris all had their highest predation rate when consuming 1st instar larvae, and their lowest predation rate when consuming prepupa. In the choice experiment, all three predatory mite species consumed their highest proportion of 1st instar larvae, and their lowest proportion of prepupae.  The oviposition rate of all three mite species in the choice experiment was similar to the oviposition rate when presented with 1st instar larvae only. The results from this study confirm that A. limonicus, A. herbicolus, and N. cucumeris can predate and reproduce on S. staphylinus 1st instar larvae, 2nd instar larvae, and prepupa. This indicates that predation may be the reason why S. staphylinus is an ineffective biocontrol agent in New Zealand. 


Sign in / Sign up

Export Citation Format

Share Document