scholarly journals Characteristic Scales of Wear Track Profiles Generated by Pin-on-Disk Wear Tests

2008 ◽  
Vol 3 (3) ◽  
pp. 205-210 ◽  
Author(s):  
Naofumi Hiraoka ◽  
Hiroyuki Matsumoto
Wear ◽  
2002 ◽  
Vol 252 (11-12) ◽  
pp. 1001-1006 ◽  
Author(s):  
S Guicciardi ◽  
C Melandri ◽  
F Lucchini ◽  
G de Portu
Keyword(s):  

2013 ◽  
Vol 785-786 ◽  
pp. 864-871
Author(s):  
Shu Xiao ◽  
Xi Yun Cheng ◽  
De Gui Ma

Carbon nanotubes (CNTs) was introduced into Ni60/Al2O3coating by flame spraying. The effect of adding CNTs on the tribological properties of the coating was studied by varying the CNTs content as 0.0, 1.5, 3.0 and 4.5 wt% in the Ni60/Al2O3powders. The microhardness tester was used to measure the microhardness of the coating. Wear tests were performed on a pin-on-disk tribometer, to evaluate the tribological properties of the Ni60/Al2O3/CNTs coatings. Microstructural characterization was performed using scanning and transmission electron microscopy. Ni60/Al2O3/CNTs coatings revealed a lower wear rate and friction coefficient compared with the original coating, and their wear rates and friction coefficients showed a decreasing trend with increasing mass fraction of CNTs within the range from 0 to 3.0 wt% due to the effects of the reinforcement and reduced friction of CNTs. The results showed that the CNTs played dual roles in improving the tribological performance of the coating, indirectly by influencing the microstructure and mechanical properties of the coating and directly by acting as a lubricating medium.


2007 ◽  
Vol 342-343 ◽  
pp. 557-560
Author(s):  
Kwon Yong Lee ◽  
Hwan Kim ◽  
D.W. Kim ◽  
Dae Joon Kim ◽  
Myung Hyun Lee ◽  
...  

The sliding wear of four different compositions of novel low temperature degradation-free zirconia/alumina (LTD-free Z/A) composites were characterized in a ceramicceramic point contact pair. The wear tests were performed by a pin-on-disk type wear tester in a linear reciprocal sliding motion with a point contact in both dry and bovine serum lubricated conditions at room temperature. For the dry sliding wear tests, AZ-2 (20 vol% (Y,Nb,Ce)-TZP/ 80 vol% Al2O3) showed the best wear resistance among four kinds of LTD-free Z/A composites. For the bovine serum lubricated sliding wear tests, wear was too little to be measured for all kinds of Z/A composites. These novel LTD-free Z/A composites having excellent wear resistance demonstrated a potential as the alternative materials for the ceramic- ceramic contact pairs of femoral head and acetabular liner in total hip replacement.


1995 ◽  
Vol 117 (2) ◽  
pp. 297-301 ◽  
Author(s):  
Youichi Kawakubo ◽  
Yotsuo Yahisa

Pin-on-disk wear tests on thin-film magnetic disks were performed using transparent materials. Quartz glass (QG), transparent zirconia (TZ), sapphire (SA), and synthesized diamond (DI) were used as pin materials. In addition to friction, sliding condition and pin wear were continuously monitored with video camera. Simultaneous friction measurement and video monitoring showed that friction dropped when wear debris intruded between pin and disk surfaces. Pin wear, from the measured diameter of wear scar on spherical pins, increased in the order of DI, SA, QG, and TZ. This order of pin wear does not coincide with that of the pin bulk hardness. Disk lifetime increased in the order of TZ, QG, SA, and DI, and the smaller the pin wear, the longer the disk lifetime.


Author(s):  
N. L. McCook ◽  
D. L. Burris ◽  
J. R. Hanrahan ◽  
W. G. Sawyer

Wear tests were performed on various expanded PTFE / epoxy composite films, using a 304 stainless steel pin, in a pin on disk configuration. The density and thickness of the expanded PTFE films were varied, and the effects on friction and wear were examined. It was found that there are trends for increased wear resistance with increasing density, and increasing film thickness. Wear rates less than 10−8 mm3/Nm were calculated on some of the composite films. The film thickness range from 75–510μm and the density ranged from 0.304 to 0.904 g/cm3. The tests were run at a 5N load and 1m/s sliding speed with varying sliding distances.


2017 ◽  
Vol 36 (5) ◽  
pp. 515-521
Author(s):  
Musa Yildirim ◽  
Dursun Özyürek ◽  
Tansel Tunçay

AbstractIn this study, the effect of molding materials on microstructure and wear behavior of A356 alloy was investigated. Different microstructures were obtained by casting A356 alloy into the molds made from three different materials. Homogenization and aging heat treatments were applied as cast blocks. The aged samples were tested by pin-on-disk-type standard wear equipment. The results showed that casting into different mold materials resulted in different microstructures of A356 alloy. Microstructures of the Al–Si–Mg alloy differ depending on the mold materials. Secondary dendrite arm space (SDAS) decreased proportionally with increasing cooling rate. Based on the cooling rate, hardness values of the alloy also differ. As the cooling rate increased, hardness of the alloy increased. The SDAS increased due to the decreasing cooling rate. In wear tests, increasing weight loss was observed with decreasing cooling rate.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
R. Carrera-Espinoza ◽  
A. Rojo Valerio ◽  
J. del Prado Villasana ◽  
J. A. Yescas Hernández ◽  
P. Moreno-Garibaldi ◽  
...  

This paper aims at encouraging the use of laser treatment as an environmentally friendly technique to improve the mechanical properties of metallic materials over conventional quenching and tempering techniques through the study of the tribological behavior of AISI 1538 MV steel subjected to surface laser quenching treatment. Sliding wear tests were carried out by the pin-on-disk method. In order to identify the wear mechanisms, the worn surfaces on the disks were evaluated by scanning electron microscopy and the wear scars on the ball were observed by optical microscopy. Results reveal that laser treatment reduces the average friction coefficient by 25% and the wear rate by 60% compared with those achieved by the conventional methods, while the depths of the wear track and hardness of the cross section and surface are maintained.


2018 ◽  
Vol 770 ◽  
pp. 106-115
Author(s):  
Jing Wen Qiu ◽  
Di Pan ◽  
Yong Liu ◽  
Ian Baker ◽  
Wei Dong Zhang

The wear behavior of powder metallurgical Ti-47Al-2Cr-0.2Mo alloy prepared by pre-alloyed powders was investigated using pin-on-disk wear tests in different environments, viz, argon, 4% hydrogen in nitrogen, air and oxygen. The disk material was sinter-hot isostatically pressed, yttria-stabilized zirconia. Lower wear rates were found for the TiAl pins in oxygen-free environments, indicating that oxygen play a key role in the wear rate. In contrast, the presence of molecular hydrogen and moisture have nearly no effect. A combination of X-ray diffraction and energy dispersive X-ray spectroscopy indicated that the abrasive particles present mainly consisted of the zirconia. In addition, zirconia particles were embedded in the worn tips of the TiAl pins and mixed into the tribolayers. The high stress and high contact temperature at the wear surface made the zirconia disk undergo a phase transformation during the dry sliding wear, accompanied by grain pullout, surface uplifting and microcracking. The hard tribolayer with embedded zirconia particles provides some protection against further wear of the TiAl pin. The highly localized, repetitive shear stress during the wear tests may bring about amorphous TiAl in the wear debris. The main wear mechanisms were abrasive wear of two-body and three-body, some delamination and plastic deformation.


1985 ◽  
Vol 107 (2) ◽  
pp. 195-199 ◽  
Author(s):  
D. Mairey ◽  
J. M. Sprauel ◽  
M. Chuard ◽  
J. Mignot

A XC carbon steel disk was submitted to the friction of a 100 C 6 steel bearing ball on a pin-on-disk tribometer. The geometry of the surface was periodically measured as was the state of the stresses, on a single point of the wear track using a very simple location process. The wear track was quickly grooved while the normal stresses (parallel to the plane of the surface) increased fast. The shearing stresses remain weak.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 55 ◽  
Author(s):  
Giulio Timelli ◽  
Alberto Fabrizi ◽  
Simone Vezzù ◽  
Alessandro De Mori

Type AlSi9Cu3(Fe) alloy has been modified by alloying with iron, manganese, and chromium elements to develop wear-resistant diecast hypoeutectic Al–Si–Cu alloys that can be applied for high-temperature applications. Several alloys have been produced by varying iron, manganese, and chromium levels (0.80, 1.00, 1.20 wt.% for Fe; 0.25, 0.40, 0.55 wt.% for Mn, and 0.06, 0.10 wt.% for Cr). Brinell hardness measurements and pin-on-disk wear tests have been conducted from room temperature up to 200 °C. The microstructural changes that occurred with the different alloying levels have been quantitatively examined by metallographic and image analysis techniques. The results showed how the increasing content of the Fe, Mn, and Cr promoted the precipitation of both primary and secondary Fe-enriched particles, mainly with polyhedral, blocky, and star-like morphologies. These compounds showed high hardness that is not affected by chemical composition and morphology variation. At high temperatures, the diecast alloys always showed lower average hardness and wear resistance, especially at 200 °C; however, a greater amount of Fe-rich particles can compensate the alloy softening.


Sign in / Sign up

Export Citation Format

Share Document