The Effects of Molding Materials on Microstructure and Wear Behavior of A356 Alloy

2017 ◽  
Vol 36 (5) ◽  
pp. 515-521
Author(s):  
Musa Yildirim ◽  
Dursun Özyürek ◽  
Tansel Tunçay

AbstractIn this study, the effect of molding materials on microstructure and wear behavior of A356 alloy was investigated. Different microstructures were obtained by casting A356 alloy into the molds made from three different materials. Homogenization and aging heat treatments were applied as cast blocks. The aged samples were tested by pin-on-disk-type standard wear equipment. The results showed that casting into different mold materials resulted in different microstructures of A356 alloy. Microstructures of the Al–Si–Mg alloy differ depending on the mold materials. Secondary dendrite arm space (SDAS) decreased proportionally with increasing cooling rate. Based on the cooling rate, hardness values of the alloy also differ. As the cooling rate increased, hardness of the alloy increased. The SDAS increased due to the decreasing cooling rate. In wear tests, increasing weight loss was observed with decreasing cooling rate.

2019 ◽  
Vol 26 (02) ◽  
pp. 1850143
Author(s):  
SAEED NIYAZBAKHSH ◽  
KAMRAN AMINI ◽  
FARHAD GHARAVI

Anodic oxide coatings are applied on aluminum alloys in order to improve corrosion resistance and to increase hardness and wear resistance. In the current study, a hard anodic coating was applied on AA7075-T6 aluminum alloy. To survey the anodizing temperature (electrolyte temperature) effect, three temperatures, namely, [Formula: see text]C, 0∘C and 5∘C were chosen and the samples were sealed in boiling water and sodium dichromate to study the role of sealing. For measuring the oxide coatings porosity and hardness and also for comparing the samples’ wear resistance field-emission scanning electron microscopy (FESEM), microhardness test and pin-on-disk method were utilized, respectively. The results showed that by increasing the anodizing temperature, hardness and consequently wear resistance decreased so that hardness and weight loss in the samples with no sealing decreased from 460[Formula: see text]HV and 0.61[Formula: see text]mg at [Formula: see text]C to 405 and 358[Formula: see text]HV and 1.05 and 1.12[Formula: see text]mg at 0∘C and 5∘C, respectively, which is due to the porosity increment by increasing the anodizing temperature. Also, sealing in boiling water and dichromate contributed to soft phases and coating hydration, which resulted in a decrease in hardness and wear resistance. Hardness and weight loss in the coated samples at [Formula: see text]C decreased from 460[Formula: see text]HV and 0.61[Formula: see text]mg in the samples with no sealing to 435 and 417[Formula: see text]HV and 0.72 and 0.83[Formula: see text]mg in the samples sealed in boiling water and dichromate, respectively.


2016 ◽  
Vol 35 (5) ◽  
pp. 487-492
Author(s):  
Ahmet Karaaslan ◽  
Alptekin Kısasöz ◽  
Ş. Hakan Atapek ◽  
Kerem Altuğ Güler

AbstractThe wear behavior of cast A7075 and A7075/SAF 2205 composite material fabricated by vacuum-assisted investment flask casting was investigated under dry sliding condition. The wear tests were carried out using a “ball-on-disc” type tribometer. In the wear tests, 100Cr6 and ZrO2 balls were used as counterparts and the load, total distance and rotating speed were selected as 10 N, 100 m and 100 rpm, respectively. The results were evaluated using the friction coefficient–distance diagram, weight loss and wear rate. All worn surfaces were examined by scanning electron microscope and wear characteristics of the materials were discussed as a function of the microstructural features. It was concluded that composite material had lower friction coefficient, less weight loss and slower wear rate than that of cast material.


2018 ◽  
Vol 770 ◽  
pp. 106-115
Author(s):  
Jing Wen Qiu ◽  
Di Pan ◽  
Yong Liu ◽  
Ian Baker ◽  
Wei Dong Zhang

The wear behavior of powder metallurgical Ti-47Al-2Cr-0.2Mo alloy prepared by pre-alloyed powders was investigated using pin-on-disk wear tests in different environments, viz, argon, 4% hydrogen in nitrogen, air and oxygen. The disk material was sinter-hot isostatically pressed, yttria-stabilized zirconia. Lower wear rates were found for the TiAl pins in oxygen-free environments, indicating that oxygen play a key role in the wear rate. In contrast, the presence of molecular hydrogen and moisture have nearly no effect. A combination of X-ray diffraction and energy dispersive X-ray spectroscopy indicated that the abrasive particles present mainly consisted of the zirconia. In addition, zirconia particles were embedded in the worn tips of the TiAl pins and mixed into the tribolayers. The high stress and high contact temperature at the wear surface made the zirconia disk undergo a phase transformation during the dry sliding wear, accompanied by grain pullout, surface uplifting and microcracking. The hard tribolayer with embedded zirconia particles provides some protection against further wear of the TiAl pin. The highly localized, repetitive shear stress during the wear tests may bring about amorphous TiAl in the wear debris. The main wear mechanisms were abrasive wear of two-body and three-body, some delamination and plastic deformation.


1983 ◽  
Vol 27 ◽  
Author(s):  
W. C. Oliver ◽  
R. Hutchings ◽  
J. B. Pethica ◽  
E. L. Paradis ◽  
A. J. Shuskus

ABSTRACTTitanium and many of its alloys show very poor wear resistance considering their hardness. This together with high thermodynamic driving forces to form very hard compounds between titanium and nitrogen or carbon made titanium based alloys obvious candidates for ion implantation. In this paper the effects of similar implanted concentration profiles of nitrogen and carbon in two titanium alloys are compared. The wear behavior of pin on disk wear tests are reported along with the ultramicrohardness of the four samples.


2017 ◽  
Vol 69 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Fatma Nazli Sari ◽  
Mehmet Baki Karamis ◽  
Yahya Kaya

Purpose The paper aims to clarify the hybrid Mg alloy composites reinforced with multi-walled carbon nanotube (MWCNT) and Cerium (Ce) rare earth element tribological properties were investigated by using pin-on-disk test configuration under dry and lubricated sliding conditions. Design/methodology/approach The paper opted for an experimental study with composite samples under lubricated conditions. Their tribological properties were investigated by using pin-on-disk test configuration under dry and lubricated sliding conditions. Wear tests were carried out at 20°C temperature. Wear behavior of Mg alloy composites was evaluated as maximum coefficient of friction and the variation of the maximum frictional forces of the samples. Findings The reinforcements such as Ce and MWCNT have a decreasing effect between 100 and 200 rpm speed tests for friction coefficient and friction force of Mg alloy. The microstructure has an important effect on the wear mechanism. There can be both adhesive and abrasive wear mechanism for the same composite at different sliding speeds. It is determined that there is no systematic relationship between reinforcement percent and sliding speed related to wear behavior of AZ 41 matrix composites reinforced with CNT and Ce. The results indicate that different wear mechanisms occur at different sliding speeds. The sliding speed has effect on both an increment and decrement for wear. Research limitations/implications Because of the chosen research approach, the research results may lack generalizability. Therefore, researchers are encouraged to test the different reinforced composite samples further. Practical implications The paper includes implications for the development of a hybrid composite reinforced with rare earth elements and MWCNT. Originality/value This paper fulfils an identified need to study a hybrid composite reinforced with rare earth elements and MWCNT.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
R. Aliasgarian ◽  
H. M. Ghasemi ◽  
M. Abedini

Effects of heat treatments and applied loads on the tribological behavior of Ti-56.5 wt. % Ni and Ti-57.5 wt. % Ni alloys were investigated. Wear tests were performed on a pin-on-disk tribometer under normal loads of 20 N and 60 N at a sliding speed of 0.3 m/s. The results indicated that the alloys aged at 700 °C showed lower hardness comparing to the alloys aged at 400 °C. Under an applied load of 20 N, the samples aged at 700 °C showed better wear behavior in comparison with the samples aged at 400 °C with a higher hardness. This could be attributed to higher toughness of the samples aged at 700 °C. The results also showed that the wear of the samples aged at 400 °C decreased with the increase in normal load. However, there was an increase in the wear of the samples aged at 700 °C with the increase of load. Formation and stability of tribological layers on the contacting surfaces could be the main reason for the reduction of the wear of the samples aged at 400 °C with the increase in normal load.


2014 ◽  
Vol 976 ◽  
pp. 184-188 ◽  
Author(s):  
Carlos A. Paredes-Orta ◽  
Federico Manriquez-Guerrero ◽  
Julieta Torres-González ◽  
Federico Castañeda ◽  
Ivan R. Terol-Villalobos

In this paper a study of wear behavior on nodular cast irons of the automotive industry is carried out. In different sections of two automobile parts, wear tests were performed using a tribometer pin-on-disk. Then, we calculated the density of nodules, volume fraction and nodularity without finding a relationship with the wear behavior. However, based on the concept of clusters of nodules, that integrate spatial distribution and size, we find that they play a major role in the wear behavior.


1994 ◽  
Vol 364 ◽  
Author(s):  
F.E. Kennedy ◽  
I. Baker ◽  
B.J. Johnson

AbstractThe purpose of this work was to study the effect of ductile phases on the wear of brittle intermetallic compounds. The material system of interest was NiAl with an incorporated ductile Fe phase. Three different compositions were studied: Fe10Ni45Al45, Fe30Ni35Al35, and Fe44Ni28Al28, each after two different heat treatments. Their wear behavior in unlubricated sliding against zirconia was investigated using pin-on-disk tests at room temperature in air. Hardness and fracture toughness tests were run for the same materials to clarify the relationship between wear and deformation. Results for the ductile-phase toughened materials were compared with results of similar tests for unalloyed NiAl.


2009 ◽  
Vol 16 (05) ◽  
pp. 653-661 ◽  
Author(s):  
JONGEE PARK ◽  
GUREL PEKKAN ◽  
ABDULLAH OZTURK

The purpose of this study was to determine the friction coefficients and wear rates of six commercially available dental ceramics including IPS Empress 2 (E2), Cergo Pressable Ceramic (CPC), Cercon Ceram (CCS) and Super porcelain EX-3 (SPE). Bovine enamel (BE) was also tested as a reference material for comparison purposes. Samples of the dental ceramics were prepared according to the instructions described by the manufacturers in disk-shape with nominal dimensions of 12 mm × 2 mm. The wear tests were performed by means of a pin-on-disk type tribometer. The friction coefficients and specific wear rates of the materials were determined at a load of 10 N and rotating speed of 0.25 cm/s without lubrication. Surface morphology of the wear tracks was examined using a scanning electron microscope. Statistical analyses were made using one-way ANOVA and Turkey's HSD (P < 0.05).


Author(s):  
Rajnesh Tyagi

The Al-TiC composites containing three different volume fractions 0.07, 0.12 and 0.18 of TiC have been fabricated and wear characteristics of Al-TiC composites have been investigated under dry sliding. Dry sliding wear tests have been carried out using a pin-on-disk wear tester at normal loads of 9.8, 14.7, 19.6 and 24.5 N and at a constant sliding velocity of 1.0 m/s. The wear rate has been found to vary linearly following Archard’s law. The wear rate is significantly lower in composites as compared to that in base material. The wear mechanism appears to be primarily oxidative under the test conditions taken in the present investigation. Average coefficient of friction also decreases linearly with increasing normal load and volume fraction of TiC.


Sign in / Sign up

Export Citation Format

Share Document