scholarly journals Heuristic Model of the Mechanical Properties of a Hypoeutectic EN AC-42100 (EN AC-AlSi7Mg0.3) Silumin Alloy Subjected to Heat Treatment

2014 ◽  
Vol 14 (4) ◽  
pp. 35-38
Author(s):  
Z. Górny ◽  
S. Kluska-Nawarecka ◽  
E. Czekaj ◽  
D. Wilk-Kołodziejczyk

Abstract The object of the experimental studies was to determine the mechanical properties of a hypoeutectic EN AC - 42100 (EN ACAlSi7Mg0,3) silumin alloy, where the said properties are changing as a result of subjecting the samples of different types to solution treatment. An important aspect of the studies was the use type of device for the heat treatment. As a basic parameter representing the mechanical properties, the tensile strength of the metal (Rm) was adopted.

2006 ◽  
Vol 114 ◽  
pp. 91-96 ◽  
Author(s):  
Maxim Yu. Murashkin ◽  
M.V. Markushev ◽  
Julia Ivanisenko ◽  
Ruslan Valiev

The effects of equal channel angular pressing (ECAP), further heat treatment and rolling on the structure and room temperature mechanical properties of the commercial aluminum alloys 6061 (Al-0.9Mg-0.7Si) and 1560 (Al-6.5Mg-0.6Mn) were investigated. It has been shown that the strength of the alloys after ECAP is higher than that achieved after conventional processing. Prior ECAP solution treatment and post-ECAP ageing can additionally increase the strength of the 6061 alloy. Under optimal ageing conditions a yield strength (YS) of 434 MPa and am ultimate tensile strength (UTS) of 470 MPa were obtained for the alloy. Additional cold rolling leads to a YS and UTS of 475 and 500 MPa with 8% elongation. It was found that the post-ECAP isothermal rolling of the 1560 alloy resulted in the formation of a nano-fibred structure and a tensile strength (YS = 540 MPa and UTS = 635 MPa) that has never previously been observed in commercial non-heat treatable alloys.


2013 ◽  
Vol 690-693 ◽  
pp. 44-48
Author(s):  
Feng Wang ◽  
Zhi Wang ◽  
Zheng Liu ◽  
Ping Li Mao

In this paper, developed a non-aluminum die casting magnesium alloys were studied based on Mg-xGd-Y-Zr(x=6, 8, 12 wt.%)alloys in cold chamber press. The microstructures and mechanical properties of die casting GWK alloys have been investigated using OM, SEM, XRD, EDS and mechanical property test. The experimental results show that with increasing Gd content of Mg-xGd-Y-Zr alloys, the tensile strength increase, but elongation decrease. In particular, die casting GWK alloys after short-term and low-temperature solid solution treatment (T4) have a small variation in grain size and more uniform microstructures, and the second phases distribute at the grain boundaries in form of discontinuous rod shape or granule shape, which result in an obvious improvement in tensile mechanical properties of alloys. The Mg-12Gd-3Y-0.5Zr die casting alloy exhibit maximum tensile strength after solution heat treatment, and the value is 269MPa at room temperature. The effect of solution heat treatment on die casting Mg-xGd-Y-Zr alloys was also discussed.


2011 ◽  
Vol 467-469 ◽  
pp. 257-262
Author(s):  
Guo Fa Mi ◽  
Jin Zhi Zhang ◽  
Hai Yan Wang

Alloys were produced by casting of Cu-Al-Fe-Be and Cu-Al-Fe-Ni aluminum bronzes and aged. The microstructures and mechanical properties were evaluated. The results indicated that solution and aging treatment can significantly improve the plasticity of Cu-Al-Fe-Be and Cu-Al-Fe-Ni, while the strength and hardness remained in the quenched level. Extending the aging time can effectively enhance the mechanical properties of alloys, and the longer the aging time, the higher the electric resistance of alloys. According to the results, the mechanical properties of the Cu-Al-Fe-Be alloy can be improved remarkably by solution treatment for 120 min at 950°C, followed by aging treatment for 120 min at 350°C, and quenched. While the most suitable heat treatment for the Cu-Al-Fe-Ni alloy was solution treatment 120 min at 950°C, followed by aging for 120 min at 450°C, and quenched. The experimental result also suggested that the Cu-Al-Fe-Be alloy possessed higher hardness and tensile strength compared to the Cu-Al-Fe-Ni alloy.


2011 ◽  
Vol 197-198 ◽  
pp. 1125-1128 ◽  
Author(s):  
Jing Jiang Nie ◽  
Liang Meng ◽  
Xiu Rong Zhu ◽  
Yong Dong Xu ◽  
Yue Yi Wu ◽  
...  

The effect of the combined action of hot work and heat treatment on the microstructure and mechanical properties of a Mg-2Gd-Nd-0.4Zn-0.3Zr (wt. %) (E21) alloy was investigated. Results showed that the solution treatment time of the ingot played a great effect on the mechanical properties of the extruded alloy. With solution treating time of the ingot increasing, the tensile strength of the extruded alloy decreased gradually, but the elongation increased greatly. The best combination of strength and ductility was achieved for the extruded alloy after the ingot solution treated at 520°C for 3 h, extrusion at 400°C and aging at 200°C for 16 h, namely ultimate tensile strength = 331MPa and elongation = 7.1%.


2011 ◽  
Vol 219-220 ◽  
pp. 195-201 ◽  
Author(s):  
Guo Fa Mi ◽  
Jin Zhi Zhang ◽  
San Lei Lv ◽  
Ping Wang

Wear behaviour of aged casting Cu-Al-Fe-Be and Cu-Al-Fe-Ni aluminum bronzes was studied in this paper. The microstructures, mechanical properties of hardness and tensile strength, were evaluated experimentally. The friction and wear resistance, and the electrical resistivity of the materials were assessed. The results show that mechanical properties of the Cu-Al-Fe-Be alloy have been improved by solution treatment at 950°C for 120 min followed by aging at 350°C for 120 min, whilst the most suitable heat treatment for the Cu-Al-Fe-Ni alloy was solution treatment at 950°C for 120 min followed by aging at 450°C for 120 min. In the wear testing, the as-cast alloys was dominated by abrasive wear, and the increase in load and sliding velocity, the adhesive wear and oxidation wear dominated. The experimental results also showed that the Cu-Al-Fe-Be alloy possessed higher hardness and tensile strength, lower friction coefficient and lower wear rate compared to the Cu-Al-Fe-Ni alloy.


2012 ◽  
Vol 562-564 ◽  
pp. 242-245 ◽  
Author(s):  
Ming Tan ◽  
Zhao Ming Liu ◽  
Gao Feng Quan

The effects of heat treatment on the microstructure, tensile property and fracture behavior of as-extruded AZ91 magnesium alloy were studied by OM and SEM. The results show that the grain of as-cast AZ91 alloy is refined by extruding and dynamic recrystallization, and the mechanical properties increase obviously. The ductility is significantly enhanced after solution treatment of the as-extruded AZ91 alloy, tensile strength is almost the same before and hardness is significantly reduced after solution treatment and artificial aging treatment. The tensile strength reduced and the ductility is significantly enhanced of as-extruded AZ91 magnesium alloy after annealing processes. The fracture surface of as-extruded AZ91 magnesium alloy has the mixture of ductile and brittle characteristic. But after T6 or annealing treatment, its dimple number increases evidently.


2017 ◽  
Vol 17 (2) ◽  
pp. 104-111
Author(s):  
Ch. Fiał

Abstract The effect of heat treatment on density, hardness, microstructure and tensile properties of Fe-0.85Mo-1.3Mn-0.6C sintered steel were investigated. Pre-alloyed Astaloy 85Mo, ferromanganese and UF4 graphite powders were mixed for 60 minutes in a Turbula mixer and then pressed in single-action die at 660MPa to produce green compacts (according to PN EN ISO 2740).The compacts were sintered in a specially designed semi-closed container at 1120 or 1250°C for 60 minutes in N2. The chemical composition of the sintering atmosphere was modified by adding getter and/or activator into the container. Two different types of heat treatment in nitrogen were carried out: sinteraustempering at 525°C for 60 minutes; and sinterhardening with additional tempering at 200°C for 60 minutes. The slightly better combination of strength and plasticity of steel for both sintering temperatures were achieved after sinterhardening+tempering variant. Average values of 0.2% offset yield stress, ultimate tensile strength and elongation after sintering in 1250°C, were 415MPa, 700MPa, and 2.0%, respectively.


2011 ◽  
Vol 471-472 ◽  
pp. 1171-1176 ◽  
Author(s):  
A. Bahrami ◽  
A. Razaghian ◽  
M. Emamy ◽  
H.R. Jafari Nodooshan ◽  
G.S. Mousavi

In this study, the relationship between microstructures and mechanical properties of the extrusion processed Al-15wt.%Mg2Si composite was investigated after applying various extrusion ratios (6:1, 12:1 and 18:1) and solution treatment. Various techniques including metallography, tensile testing and SEM fractography were utilized to characterize the mechanical behavior of the MMC. Results demonstrated that extruded and heat treated composite possesses considerably higher strength and enhanced ductility in comparison with the as-cast samples. It was also found that heat treatment and extrusion processes do not change the primary Mg2Si morphology considerably, but its size increases as extrusion ratio decreased. Heat treatment and extrusion ratio effects on tensile strength, elongation of extruded specimens were also studied in this work.


Author(s):  
Mukesh Kumar ◽  
Muhammad Moazam Baloch ◽  
Muhammad Ishaque Abro ◽  
Sikandar Ali Memon ◽  
Ali Dad Chandio

Aluminum alloys have been attracted by several engineering sectors due to their excellent strengthweight ratio and corrosion resistant properties. These are categorized into 1, 2, 3, 4, 5, 6, 7and 8xxx on the basis of alloying elements. Among these 6xxx series contains aluminum–magnesium–silicon as alloying elements and are widely used in extruded products and automotive body panels. The major advantages of these alloys are good corrosion resistance, medium strength, low cost, age hardening response no yield point phenomenon and Ludering. 6xxx series alloys generally have lower formability than other aluminum alloys which restrict their utilization for wide applications. Keeping in view of the shortcomings in the set of mechanical properties of 6xxx series the efforts were made to improve the tensile strength and toughness properties through age hardening. In present study heat treatment cycles were studied for 6061 aluminum alloy. Three different age hardening temperatures 160, 200 and 240oC were selected. The obtained results showed that 17.26, 7.69, and 10.51% improvement in tensile strength, toughness and hardness respectively was achieved with solution treatment at 380oC followed by an aging 240oC. Microstructural study revealed that substantial improvements in the mechanical properties of 6061 aluminum alloy under heat treatment were achieved due to precipitation of Mg2Si secondary phase.


Sign in / Sign up

Export Citation Format

Share Document