scholarly journals A Review of Compressed Air Engine in the Vehicle Propulsion System

2021 ◽  
Vol 15 (4) ◽  
pp. 215-226
Author(s):  
Michal Korbut ◽  
Dariusz Szpica

Abstract Engines powered by compressed air as a source of propulsion are known for many years. Nevertheless, this type of drive is not commonly used. The main reason for not using commonly is the problem with the low energy density of the compressed air. They offer a number of advantages, primarily focusing on the possibility of significantly lowering the emissions of the engine. Their emissivity mainly depends on the method of obtaining compressed air. This also has an impact on the economic aspects of the drive. Currently there are only a few, ready to implement, compressed air powered engine solutions available on the market. A major advantage is the ability to convert internal combustion engines to run with compressed air. The study provides a literature review of solutions, focusing on a multifaceted analysis of pneumatic drives. Increasing vehicle approval requirements relating to their emissions performance are encouraging for the search of alternative power sources. This creates an opportunity for the development of unpopular propulsion systems, including pneumatic engines. Analysing the works of some researchers, it is possible to notice a significant increase in the efficiency of the drive, which may contribute to its popularisation.

2020 ◽  
pp. 146808742094613
Author(s):  
Paolo Gobbato ◽  
Massimo Masi ◽  
Luigi De Simio ◽  
Sabato Iannaccone

An original method for formulating surrogate fuels from actual syngas mixtures is presented and formalised. The method is the first example in the scientific literature of a rather complete tool for planning and setting up a laboratory syngas-fuelled engine test when some components of the syngas mixture are not available. Basically, the method allows a map to be built that provides the composition for a surrogate fuel once the composition of a syngas mixture is assigned, the components of a surrogate fuel are selected and the equivalence parameters are defined. The laminar flame speed, the energy density of the fuel–air mixture and the methane number are identified as equivalence parameters in the study. In particular, the proper laminar flame speed and energy density ensure that an engine fuelled by the surrogate mixture produces the same indicated power as it would when fuelled by the original syngas. Instead, the methane number allows for checking the fact that the tendency of the engine to knock is the same or greater than the knock tendency during syngas operation. In this article, the method is used to determine the hydrogen–methane–nitrogen mixtures corresponding to six five-component syngas mixtures, resulting from actual gasification processes. The laminar flame speed and methane number of each syngas mixture are estimated by means of simple original models aimed at either improving the predicting capabilities of existing models or allowing for a prompt application of the procedure. The results show that four of the six surrogate fuels are equally or more knock-prone than the original syngas mixtures, whereas only one of the two remaining surrogate fuels likely imposes a retardation of the spark advance in the final setup of the engine for actual syngas operation.


Author(s):  
Cristiana Delprete ◽  
Abbas Razavykia

Internal combustion engines are at present used as the major power sources for transportation and power generator. Improvement of the internal combustion engine efficiency is expected due to strict environmental standards and energy costs. Any reduction in oil consumption, friction power losses and emissions results in improving engines’ performance and durability. Automotive industries have intense passion to increase engines’ efficiency to meet the fuel economy and emission standards. Many studies have been conducted to develop reliable approaches and models to understand the lubrication mechanisms and calculate power losses. This review paper summarizes the synthesis of the main technical aspects considered during modeling of piston ring–liner lubrication and friction losses investigations. The literature review highlights the effects of piston ring dynamics, components geometry, lubricant rheology, surface topography and adopted approaches, on frictional losses contributed by the piston ring-pack.


2022 ◽  
Vol 334 ◽  
pp. 06001
Author(s):  
Massimo Rivarolo ◽  
Federico Iester ◽  
Aristide F. Massardo

This paper presents an innovative algorithm to compare traditional and innovative energy systems onboard for maritime applications. The solutions are compared adopting a multi-criteria method, considering four parameters (weight, volume, cost, emissions) and their relevance according to the kind of ship and navigation route. The algorithm, which includes a large and updated database of market solutions, leads to the implementation of HELM (Helper for Energy Layouts in Maritime applications) tool. HELM was conceived to support the design of maritime systems: it chooses the best technology comparing traditional marine diesel engines, propulsion systems with alternative fuels (methanol, ammonia, LNG) and innovative low-emission technologies (fuel cell and batteries). Two case studies are investigated: (i) a small passenger ship for short routes (ii) and a large size ro-ro cargo ship. For case (i), fuel cells represent a competitive solution, in particular considering navigation in emission control areas. For case study (ii) Internal Combustion Engines shows are the best solution. The evaluation of alternative fuels is performed, considering a sensitivity analysis on emissions’ importance: methanol, LNG, and ammonia are promising solutions. For case (i), the installation of electrical batteries is also evaluated to analyse potential advantages to reduce the amount of H2 stored onboard.


2019 ◽  
Vol 9 (21) ◽  
pp. 4597 ◽  
Author(s):  
José Ramón Serrano ◽  
Ricardo Novella ◽  
Pedro Piqueras

Internal combustion engines (ICE) are the main propulsion systems in road transport [...]


2020 ◽  
pp. 37-38
Author(s):  
I.K. Aleksandrov ◽  
V.A. Rakov ◽  
N.E. Dyimov

A method for determining of mechanical losses in an internal combustion engine is proposed, the principal difference of which is the rotation of the engine shaft with compressed air. This method provides high reliability results on reduction of fuel consumption and emissions of harmful substances. Keywords ICE, mechanical losses, tests, compressed air [email protected]


2011 ◽  
Vol 115 (1173) ◽  
pp. 683-692 ◽  
Author(s):  
B. Saeed ◽  
G. Gratton ◽  
C. Mares

AbstractThis paper presents a feasibility study to integrate a developed lift system (an annular wing wrapped around a centrifugal flow generator) into a Vertical/Short Take-Off and Landing V/STOL aircraft. Different physical scales, from micro aerial vehicle to a Harrier Jump Jet scale, for a variety of propulsion systems are explored. The system has shown to be viable for several classes of aircraft but with better performance offered by a micro-aerial-vehicle (~40g) and a large vehicle (~10,000kg) with a turbofan engine, albeit in both cases with apparently worse performance than is offered by current technologies. The wingform does not appear to be feasible in the light aircraft scale whilst using internal combustion engines.


Author(s):  
A. Higuera-Garrido ◽  
R. Gonza´lez ◽  
M. Cadenas ◽  
J. L. Viesca ◽  
A. Herna´ndez-Battez

The use of texturing as a surface treatment that improves the tribological behavior is widespread in industrial and scientific fields, it is used in internal combustion engines [1], in biomechanical applications [2], in manufacturing processes [3] and in a full range of different applications. When texturing is carried out at low energy levels, the material melts superficially in a process governed by convection and thermocapillarity phenomena [4], whereas at high energy levels the reaction of the material could lead to its sudden vaporization [5] and local melting.


2019 ◽  
pp. 26-31
Author(s):  
Wu Po ◽  
Boris Tymoshevskyy ◽  
Yuriy Halynkin ◽  
Andriy Proskurin

At present time internal combustion engines (ICE) are the most spread as main and auxiliary ICE for vehicles, vessels, power generation, etc. Their application is associated with low energy efficiency, negative impact on the environment due to high emissions of harmful substances and the use of oil fuels. The vehicles with electric motors are alternative upon to existing ones.


Author(s):  
Peter Marcinko ◽  
Mikulas Hajduk

Urgency of the research. The issue of a pneumatic car – air car developing is very important nowadays, as the environment is threatened by a variety of emissions from cars. The decision has to be made. There are various alternatives to internal combustion engines, and one of them is compressed air engines. Target setting. The main goal is to develop a car that runs on compressed air and create a frame that matches the dimensions specified for the competition. Actual scientific researches and issues analysis. In recent years, Aventics has organized competitions and races on pneumatic vehicles. These races have been running by Emerson for thirteen years. The pneumatic cars had to take part in all categories of competitions. We have been dealing with this issue in Slovakia for the third year, and this pneumatic car is our third model. Uninvestigated parts of general matters defining. This article describes a car that runs on compressed air, as well as describes in more detail the frame used and its design features. The research objective. The purpose of this study is to analyze the pneumatic vehicle, its parts and to give a detailed description of the manufactured frame and its properties. The corresponding frame was made on the basis of the conditions determined by Emerson's competitions. The statement of basic materials. The analysis was conducted on the basis of the terms of the competition. These conditions are determined by the maximum and minimum dimensions of the car. Based on these conditions, a frame was developed, it was previously analyzed by FEA - MKP. The description of the frame is given below. Conclusions. This article describes the design of a pneumatic car for competitions. The competition focus is cars powered by compressed air. The pneumatic cars were developed by bachelors and technical school. The design of this car has passed the initial inspection and has been approved by the organizers of the competition.


2019 ◽  
Vol 23 (Suppl. 5) ◽  
pp. 1727-1743 ◽  
Author(s):  
Ivan Blagojevic ◽  
Sasa Mitic ◽  
Dragan Stamenkovic ◽  
Vladimir Popovic

Limited reserves of oil and the increasing environmental effect of its usage as a motor fuel represent global issue related to the constantly increasing number of motor vehicles. Therefore, the reduction of the fossil fuel consumed and the emission produced in internal combustion engines is the primary goal of the development of motor vehicle propulsion systems. In that sense, the present and the future of motor vehicles relies on hybrid drive systems, electric drive systems and drive systems which use hydrogen as a fuel (either by its combustion or by production of electric energy with the help of fuel cells). In this paper, the authors have presented the aforementioned motor vehicle propulsion systems by explaining their function and design, their basic elements and their functions. Authors have also analysed advantages and disadvantages of the mentioned propulsion systems in comparison to conventional internal combustion engine based systems, both technically and environmentally speaking, but also in relation to available infrastructure and energy resources.


Sign in / Sign up

Export Citation Format

Share Document