Analysis of the Influence of Drawing Process Parameters on the Mechanical Properties of Trip-Structure Steel Wires

2013 ◽  
Vol 58 (2) ◽  
pp. 573-578 ◽  
Author(s):  
S. Wiewiórowska

The research concerned with wire drawing processes of medium-carbon steel with TRIP effect classified into group of AHSS (Advanced High Strength Steel) steels, which are the multiphase steels offering a unique combination of high strength and ductility, has been shown in the work. Such combination is achieved through the transformation of retained austenite to martensite in deformation process called TRIP effect (Transformation Induced Plasticity). Studies reported in the literature relate mainly to the research on the car body sheet rolling and heat treatment processes, which does not allow the results of this research to be referred to the analysis of drawing processes. Therefore, the need has arisen for developing and conducting comprehensive studies on the process of drawing TRIP steels wires and identification the new application areas for these materials.

2021 ◽  
Vol 406 ◽  
pp. 505-510
Author(s):  
Mohamed Chaouki Nebbar ◽  
Mosbah Zidani ◽  
Salim Messaoudi ◽  
Taher Abid ◽  
Ahmed Kisrane-Bouzidi ◽  
...  

This study was mainly oriented on the evolution of the crystallographic texture as a function of the deformation resulting from the industrial wire drawing process. This, in fact, will make it possible to establish a relationship between the microstructure and the crystallographic texture in the medium carbon steel wires obtained by industrial wire drawing process and used in the manufacture of spring mattresses in order to minimize the loss of material and to satisfy the users of this product.During this study, a medium-carbon steel wires was characterized by two analytical techniques. The scanning electron microscopy (SEM) to monitor the microstructure evolution and the electron backscatter diffraction (EBSD) for the crystallographic texture analysis. The EBSD results are processed with OIM (Orientation Imaging Microscopy) analysis software.


2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1275 ◽  
Author(s):  
Yanjie Mou ◽  
Zhichao Li ◽  
Xiaoteng Zhang ◽  
Devesh Misra ◽  
Lianfang He ◽  
...  

High strength/high elongation continues to be the primary challenge and focus for medium-Mn steels. It is elucidated herein via critical experimental analysis that the cumulative contribution of transformation-induced plasticity (TRIP) and microstructural constituents governs high strength/high elongation in 0.2C–3Al–(6–8.5)Mn–Fe steels. This was enabled by an effective heat treatment involving a combination of intercritical hardening and tempering to obtain high strength/high ductility. An excellent combination of high ultimate tensile strength of 935–1112 MPa and total elongation of 35–40% was obtained when the steels were subjected to intercritical hardening in the temperature range of 700–750 °C and low tempering at 200 °C. The intercritical hardening impacted the coexistence of austenite, ferrite, and martensite, such that the deformation behavior varied with the Mn content. The excellent obtained properties of the steels are attributed to the cumulative contribution of the enhanced TRIP effect of austenite and the microstructural constituents, ferrite and martensite. The discontinuous TRIP effect during deformation involved stress relaxation, which was responsible for the high ductility. Lamellar austenite, unlike the equiaxed microstructure, is envisaged to induce stress relaxation during martensitic transformation, resulting in the discontinuous TRIP effect.


2012 ◽  
Vol 531-532 ◽  
pp. 596-599
Author(s):  
Kai Zhang ◽  
Shang Wen Lu ◽  
Yao Hui Ou ◽  
Xiao Dong Wang ◽  
Ning Zhong

The recently developed “quenching and partitioning” heat treatment and “quenching-partitioning-tempering” heat treatment are novel processing technologies, which are designed for achieving advanced high strength steels (AHSS) with combination of high strength and adequate ductility. In present study, a medium carbon steel containing Nb was subjected to the Q-P-T process, and both the microstructure and mechanical properties was studied. The experimental results show that the Nb-microalloyed steel demonstrates high tensile strength and relatively high elongation. The microstructure of the steel was investigated in terms of scanning electron microscope and transmission electron microscope, and the results indicate that the Q-P-T steel consist of fine martensite laths with dispersive carbide precipitates and the film-like interlath retained austenite. The orientation relationships between martensite and retained austenite is as well-known Kurdjurmov-Sachs relationship and Nishiyama-Wasserman relationship.


2015 ◽  
Vol 216 ◽  
pp. 348-356 ◽  
Author(s):  
Ho Seon Joo ◽  
Sun Kwang Hwang ◽  
Hyun Moo Baek ◽  
Yong-Taek Im ◽  
Il-Heon Son ◽  
...  

Author(s):  
Mohamed Chaouki Nebbar ◽  
Mosbah Zidani ◽  
Toufik Djimaoui ◽  
T. Abid ◽  
Hichem Farh ◽  
...  

This study focuses on the evolution in the microstructure, texture and mechanical properties of medium carbon steel wires obtained by wire drawing at Tréfissoud Company for the manufacturing of the spring mattress. Wire drawing induces elongation of grains in the direction of drawing with the development of the <110> fibre texture parallel to the wire axis. Kinking and bending of cementite lamellae were observed during the drawing process. The work was carried out respectively on three states, wire rod and drawn states for two different amounts (ε %=43,6 and 60 %), using the optical and SEM microscopy, electron backscatter diffraction and X-ray diffraction analysis for examination of the microstructure and texture evolution, the hardness Vickers and tensile test to follow the curing of the studied wires.


2010 ◽  
Vol 455 ◽  
pp. 392-396 ◽  
Author(s):  
Zhi Bo Yang ◽  
Ai Ju Liu ◽  
Jiu Hua Xu

In order to develop new generation brazed Diamond grinding wheels, the joining experiments of Diamond super abrasive grains and medium carbon steel using the powder mixture of Ni-Cr alloy as active brazing alloy are carried out via laser in an argon atmosphere. The relevant characteristics of the special powder mixture, the microstructure of the interfacial region, which are both the key factors for determining the joining strength among the Diamond grains, the filler layer and the steel substrate, are investigated extensively by means of scanning electron microscope (SEM) and energy dispersion spectrometer (EDS), as well X-ray diffraction (XRD) analysis. The formation mechanism of carbide layers was discussed. All the results indicate that high strength bonding between diamond grits and the steel substrate has been successfully realized because the chromium in the Ni-based alloy segregated preferentially to the surface of the diamond to form a chromium-rich reaction product Cr3C2, and the bond between the alloy and the Diamond was established through the reaction product.


Sign in / Sign up

Export Citation Format

Share Document