Selected Aspects of Numerical Modelling of the Salt Rock Mass: The Case of the “Wieliczka” Salt Mine / Wybrane aspekty modelowania numerycznego masywu solnego na przykładzie kopalni soli „wieliczka”

2013 ◽  
Vol 58 (1) ◽  
pp. 73-88
Author(s):  
Kajetan D’Obyrn ◽  
Joanna Hydzik-Wiśniewska

Each excavation or excavation complex intended to be backfilled or secured requires an individual approach, and conducting a detailed geomechanical analysis which will allow the selection of the appropriate manner of securing or backfilling or liquidation, and the order of performing mining works. The numerical model of the selected chamber or group of chambers must accurately reflect the reality and have an appropriately selected calculation model. The paper presents the selected aspects of numerical modelling of the “Wieliczka” salt rock mass. There are method of selection of geotechnical and rheological parameters of salt, the geometrization of the excavations continues and selection calculation model.

2012 ◽  
Vol 57 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Kajetan D’Obyrn

The Wieliczka Salt Mine is the most famous and the most visited mining industry monument in the world and it requires modern methods to ensure rock mass stability and tourists’ security. Both for conservation and tourism organization reasons, the group of Warszawa-Wisla-Budryk-Lebzeltern-Upper Witos Chambers (Photo. 1, 2. 3) located the Kazanów mid-level at a depth of 117 m underground is extremely important. Discontinuous deformation occurring in this Chamber complex was eliminated by comprehensive securing work with anchor housing, but their final securing and stability is conditioned by further backfilling and sealing the Witos Chambers situated directly beneath. In the 1940s and 1950s, the Witos Chamber was backfilled with slag from the mine boilerhouse. However, slags with 80% compressibility are not backfilling material which would ensure the stability of the rock mass. The chambers were exploited in the early nineteenth century in the Spizit salts of the central part of the layered deposit. The condition of the Upper Witos, Wisla, Warszawa, Budryk, and Lebzeltern Chambers is generally good. The western part if the Lebzeltern Chamber (Fig. 1), which was threatened with collapse, was backfilled with sand. In all the chambers of the Witos complex, local deformation of ceiling rock of varying intensity is observed as well as significant destruction of the side walls of pillars between chambers. No hydrogeological phenomena are observed in the chambers. It has been attempted to solve the problem of stability of the rock mass in this region of the mine by extracting the slag and backfilling with sand, erecting concrete supporting pillars, backfilling the voids with sand, anchoring the ceiling and the side walls, the use of the pillar housing. The methods have either not been applied or have been proved insufficient to properly protect the excavation situated above. In order to select the optimal securing method, a geomechanical analysis was conducted in order to determine the condition of the chambers with particular emphasis on the pillars between the chambers. The analysis demonstrated the need to backfilling the Witos Chambers in order to improve the strength parameters of the pillars and the cross-level ledge. The next step consisted of selecting the sealing mix and testing how the additional burden and improving the slag strength parameters shall affect the stability of the excavations of the Kazanów mid-level. In order to determine the optimal composition of the backfilling mixtures, formulas of sealing brine slurries have been developed. Laboratory tests were also conducted concerning the strain parameters specifications of slags extracted from the Witos Chamber. Taking into account the slurry tests, and in particular, the density, strength and strain parameters, the optimal composition of the sealing mix was selected. The analysis of the results of numerical recalculations demonstrate that even the use of highest-density mixtures, backfilling(sealing) of the Witos Chambers should not cause significant disturbance of the current tension in the surrounding rock mass. The longterm impact of sealing should lead to improvement of the strain levels on the ledges between Level III and Kazanów mid-level chambers. The positive results of applying in the Mine of injection slurries for sealing and stabilizing the rock mass and the construction of the injection node on the surface of the Kosciuszko shaft area have allowed resuming work in the Witos Chambers. The main injection over 1,000 m long pipeline was constructed from the injection node through the Kosciuszko Shaft and along Level III of the mine. The sealing of the Witos Chambers complex was divided into three areas (Fig. 2) separated by backfilling dams. Each region was connected to an injection and venting pipeline, and areas of possible injection material off-flow from backfilling locations were secured. Once that the Chambers are sealed with the use of the pipeline seven bore holes will be drilled from excavations situated above through which the sealing slurry will be administered. The operation will serve to eliminate any voids and re-seal the slag, and it will be conducted until pressures of approximately 0.5 MPa on the bore hole collar is achieved. As past experience indicates, injection slurry formula can be regularly adjusted adequately to the changing geomechanical parameters and the type of sealing work at the Wieliczka Mine. Once that the backfilling and sealing process in the Witos Chambers complex is completed, it shall be necessary to conduct monitoring activities in order to determine the processes occurring in the rock mass after the backfilling. The properties of sealing mixtures qualify those for use in the environment both of salt mines and other mineral ore mines to stabilize the rock mass in the mining-geomechanical context precluding the possibility of weakening the rock mass strength parameters and at the same time sealing the rock mass and the loose material deposited in the excavation.


2012 ◽  
Vol 594-597 ◽  
pp. 452-455 ◽  
Author(s):  
Xiao Lan Huang ◽  
Chao Yu

The existence of interlayers has great influence on the stability of salt cavern. Based on the research results of creep test and other mechanical properties of salt rock and interlayer in Yunying Salt Mine, Hubei Province, cylindrical singular calculation model of salt rock cavity is built, and the corresponding simulation is conducted. Hard interlayer’s constraint influence on the creep contraction deformation of salt cavity is demonstrated. In addition, how the number of interlayers affects cavity radial deformation is discussed too. The results are important to oil-gas storage cavern modeling analysis in laminated salt rock.


2019 ◽  
Vol 97 ◽  
pp. 02028
Author(s):  
Klaudia Jendrysik ◽  
Michał Pachnicz ◽  
Paweł Dudziński

Numerical modelling of geomaterials is always complex due to the variability of parameters within the soil massif (created in the natural geological processes) and the orthotropy caused by this. In the case of the soil substrate modification with the use of hydraulic binders, this issue is complicated even more due to the fact the degree of mixing can be differentiated for various areas, while in the dry mixing technology, it is additionally differentiated with the depth of consolidation stress. Additional factor that makes it difficult to predict the behaviour of stabilised soil is the possible content of organic parts. Due to the development of substrate reinforcement technology, as well as the growing market for such works, a need emerged to provide parameters of the numerical model for various materials or, at least, to provide a method for reverse analysis on the basis of available data. This paper presents an example of calibration of the selected numerical model (through parameter selection of this model) based on the conducted examinations of cubic sample in the conditions of uniaxial compression. The results of laboratory tests, reverse analysis in the numerical model with a pre-selected strength hypothesis and finally, the recommendations for selection of the model in calculations of real structure on a reinforced substrate, are demonstrated.


2021 ◽  
Vol 29 ◽  
pp. 455-461
Author(s):  
Bing Hu ◽  
Zhizhi Wang ◽  
Minbo Xu ◽  
Luyao Zhu ◽  
Dingjiang Wang

BACKGROUND: The selection of optimal target areas in the surgical treatment of epilepsy is always a difficult problem in medicine. OBJECTIVE: We employed a theoretical calculation model to explore the control mechanism of seizures by an external voltage stimulus acting in different nerve nuclei. METHODS: Theoretical analysis and numerical simulation were combined. RESULTS: The globus pallidus, excitatory pyramidal neurons, striatal D1 neurons, thalamic reticular nucleus and specific relay nuclei were selected, we analyzed that the electrical stimulation has different effects in these target areas. CONCLUSIONS: The data selected were reasonable in study, the results may give a theoretical support for similar studies in clinical.


2019 ◽  
Vol 9 (10) ◽  
pp. 2065 ◽  
Author(s):  
Jonguk Kim ◽  
Hafeezur Rehman ◽  
Wahid Ali ◽  
Abdul Muntaqim Naji ◽  
Hankyu Yoo

In extensively used empirical rock-mass classification systems, the rock-mass rating (RMR) and tunneling quality index (Q) system, rock-mass quality, and tunnel span are used for the selection of rock bolt length and spacing and shotcrete thickness. In both systems, the rock bolt spacing and shotcrete thickness selection are based on the same principle, which is used for the back-calculation of the rock-mass quality. For back-calculation, there is no criterion for the selection of rock-bolt-spacing-based rock-mass quality weightage and shotcrete thickness along with tunnel-span-based rock-mass quality weightage. To determine this weightage effect during the back-calculation, five weightage cases are selected, explained through example, and applied using published data. In the RMR system, the weightage effect is expressed in terms of the difference between the calculated and back-calculated rock-mass quality in the two versions of RMR. In the Q system, the weightage effect is presented in plots of stress reduction factor versus relative block size. The results show that the weightage effect during back-calculation not only depends on the difference in rock-bolt-spacing-based rock-mass quality and shotcrete along with tunnel-span-based rock-mass quality, but also on their corresponding values.


2014 ◽  
Vol 1020 ◽  
pp. 423-428 ◽  
Author(s):  
Eva Hrubesova ◽  
Marek Mohyla

The paper deals with the back analysis method in geotechnical engineering, that goal is evaluation the more objective and reliable parameters of the rock mass on the basis of in-situ measurements. Stress, deformational, strength and rheological parameters of the rock mass are usually determined by some inaccuracies and errors arising from the complexity and variability of the rock mass. This higher or lower degree of imprecision is reflected in the reliability of the mathematical modelling results. The paper presents the utilization of direct optimization back analysis method, based on the theory of analytical functions of complex variable and Kolosov-Muschelischvili relations, to the evaluation of initial stress state inside the rock massif.


2019 ◽  
Vol 15 (2) ◽  
pp. 523-536
Author(s):  
Jinliang Liu ◽  
Yanmin Jia ◽  
Guanhua Zhang ◽  
Jiawei Wang

Purpose The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the bond-slip theory to calculate the crack width in PC beams. Design/methodology/approach Stress calculation method for common reinforcement after beam crack has occurred depends on the difference in the bonding performance between prestressed reinforcement and common reinforcement. A numerical calculation model for determining the crack width in PC beams is developed based on the bond-slip theory, and verified using experimental data. The calculation values obtained by the proposed numerical model and code formulas are compared, and the applicability of the numerical model is evaluated. Findings The theoretical analysis and experimental results verified that the crack width of PC members calculated based on the bond-slip theory in this study is reasonable. Furthermore, the stress calculation method for the common reinforcement is verified. Compared with the model calculation results obtained in this study, the results obtained from code formulas are more conservative. Originality/value The numerical calculation model for crack width proposed in this study can be used by engineers as a reference for calculating the crack width in PC beams to ensure the durability of the PC member.


1980 ◽  
Vol 1 (17) ◽  
pp. 142
Author(s):  
D. Prandle ◽  
E.R. Funke ◽  
N.L. Crookshank ◽  
R. Renner

The use of array processors for the numerical modelling of estuarine systems is discussed here in the context of "hybrid modelling", however, it is shown that array processors may be used to advantage in independent numerical simulations. Hybrid modelling of tidal estuaries was first introduced by fiolz (1977) and later by Funke and Crookshank (1978). In a hybrid model, tidal propagation in an estuary is simulated by dynamically linking an hydraulic (or physical) scale model of part of the estuary to a numerical model of the remaining part in a manner such that a free interchange of flow occurs at the interface(s). Typically, the elevation of the water surface at the boundary of the scale model is measured and transmitted to the numerical model. In return, the flow computed at the boundary of the numerical model is fed directly into the scale model. This approach enables the extent of the scale model to be limited to the area of immediate interest (or to that area where flow conditions are such that they can be most accurately simulated by a scale model). In addition, since the region simulated by the numerical model can be extended almost indefinitely, the problems of spurious reflections from downstream boundaries can be eliminated. In normal use, numerical models are evaluated on the basis of computing requirements, cost and accuracy. The computer time required to simulate one tide cycle is, in itself, seldom of interest except in so far as it affects the above criteria. However in hybrid modelling this parameter is often paramount since concurrent operation of the numerical and scale models requires that the former must keep pace with the latter. The earlier hybrid model of the St. Lawrence (Funke and Crookshank, 1978) involved a one-dimensional numerical model of the upstream regions of the river. However, future applications are likely to involve extensive two-dimensional numerical simulation.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012063
Author(s):  
I G Donskoy

Abstract The paper considers a numerical model of a flow in a porous medium containing particles of a melting component (polymer). For this, an implicit numerical method of splitting in directions is used. Calculations are carried out for two heating methods (through the side wall, or by the input gas). The simulation results qualitatively reproduce some of the experimentally observed features of the thermal decomposition of polymer-containing mixtures. The results obtained are of interest in the study of low-grade fuels processing, often accompanied by agglomeration, as well as in the development of methods by which agglomeration can be prevented.


Sign in / Sign up

Export Citation Format

Share Document