scholarly journals Fiber digestibility in growing pigs fed common fiber-rich ingredients: a systematic review

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pan Yang ◽  
Jinbiao Zhao

Abstract The application of high-fiber ingredients in the swine feed industry has some limitations considering that high amounts of fiber are resistant to endogenous enzymatic degradation in the pig’s gut. However, there is growing interest in fiber fermentation in the intestine of pigs due to their functional properties and potential health benefits. Many strategies have been applied in feed formulations to improve utilization efficiency of fiber-rich ingredients and stimulate their prebiotic effects in pigs. This manuscript reviews chemical compositions, physical properties, and digestibility of fiber-rich diets formulated with fibrous ingredients for growing pigs. Evidences presented in this review indicate there is a great variation in chemical compositions and physical properties of fibrous ingredients, resulting in the discrepancy of energy and fiber digestibility in pig intestine. In practice, fermentation capacity of fiber components in the pig’s intestine can be improved using strategies, such as biological enzymes supplementation and feed processing technologies. Soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), rather than neutral detergent fiber (NDF) and acid detergent fiber (ADF), are recommended in application of pig production to achieve precise feeding. Limitations of current scientific research on determining fiber digestibility and short chain fatty acids (SCFA) production are discussed. Endogenous losses of fiber components from non-dietary materials that result in underestimation of fiber digestibility and SCFA production are discussed in this review. Overall, the purpose of our review is to provide a reference for feeding the pig by choosing the diets formulated with different high-fiber ingredients.

Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 35
Author(s):  
Rachelle A. Pretorius ◽  
Debra J. Palmer

Higher dietary fiber intakes during pregnancy may have the potential health benefits of increasing gut microbiome diversity, lowering the risk of glucose intolerance and pre-eclampsia, achieving appropriate gestational weight gain, and preventing constipation. In this observational cohort study, we have assessed the dietary fiber intakes of 804 women in late pregnancy, using a semi-quantitative food frequency questionnaire (SQ-FFQ). Overall, the median (interquartile range) dietary fiber intake was 24.1 (19.0–29.7) grams per day (g/day). Only 237/804 (29.5%) women met the recommended Adequate Intake (AI) of dietary fiber during pregnancy of 28 g/day. Women consuming the highest quartile of fiber intakes (34.8 (IQR 32.1–39.5) g/day) consumed more fruit, especially apples and bananas, than women consuming the lowest quartile of fiber intakes (15.9 (IQR 14.4–17.5) g/day). These women in the highest fiber-intake quartile were older (p < 0.01), more had completed further education after secondary school (p = 0.04), and they also consumed more vegetables (67 g/day) compared to the women in the lowest fiber consumption quartile (17 g vegetables/day). Bread intakes of 39–42 g/day were consistent in quantities consumed across all four fiber-intake quartiles. Our findings suggest that antenatal education advice targeting increased fruit and vegetable consumption before and during pregnancy may be a simple strategy to achieve increased total dietary fiber intakes to reach recommended quantities.


Author(s):  
Amy L Petry ◽  
Nichole F Huntley ◽  
Michael R Bedford ◽  
John F Patience

Abstract In theory, supplementing xylanase in corn-based swine diets should improve nutrient and energy digestibility and fiber fermentability, but its efficacy is inconsistent. The experimental objective was to investigate the impact of xylanase on energy and nutrient digestibility, digesta viscosity, and fermentation when pigs are fed a diet high in insoluble fiber (&gt;20% neutral detergent fiber; NDF) and given a 46-d dietary adaptation period. Three replicates of 20 growing gilts were blocked by initial body weight, individually housed, and assigned to 1 of 4 dietary treatments: a low-fiber control (LF) with 7.5% NDF, a 30% corn bran high-fiber control (HF; 21.9% NDF), HF+100 mg xylanase/kg [HF+XY, (Econase XT 25P; AB Vista, Marlborough, UK)] providing 16,000 birch xylan units/kg; and HF+50 mg arabinoxylan-oligosaccharide (AXOS) product/kg [HF+AX, (XOS 35A; Shandong Longlive Biotechnology, Shandong, China)] providing AXOS with 3-7 degrees of polymerization. Gilts were allowed ad libitum access to fed for 36-d. On d 36, pigs were housed in metabolism crates for a 10-d period, limit fed, and feces were collected. On d 46, pigs were euthanized and ileal, cecal, and colonic digesta were collected. Data were analyzed as a linear mixed model with block and replication as random effects, and treatment as a fixed effect. Compared with LF, HF reduced the apparent ileal digestibility (AID), apparent cecal digestibility (ACED), apparent colonic digestibility (ACOD), and apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), crude protein (CP), acid detergent fiber (ADF), NDF, and hemicellulose (P&lt;0.01). Relative to HF, HF+XY improved the AID of GE, CP, and NDF (P&lt;0.05), and improved the ACED, ACOD, and ATTD of DM, GE, CP, NDF, ADF, and hemicellulose (P&lt;0.05). Among treatments, pigs fed HF had increased hindgut DM disappearance (P=0.031). Relative to HF, HF+XY improved cecal disappearance of DM (162 vs. 98g; P=0.008) and NDF (44 vs. 13g; P&lt;0.01). Pigs fed xylanase had a greater proportion of acetate in cecal digesta and butyrate in colonic digesta among treatments (P&lt;0.05). Compared with LF, HF increased ileal, cecal, and colonic viscosity, but HF+XY decreased ileal viscosity compared with HF (P&lt;0.001). In conclusion, increased insoluble corn-based fiber decreases digestibility, reduces cecal fermentation, and increases digesta viscosity, but supplementing xylanase partially mitigated that effect.


1986 ◽  
Vol 66 (1) ◽  
pp. 257-265 ◽  
Author(s):  
ROBERT J. MOORE ◽  
E. T. KORNEGAY ◽  
M. D. LINDEMANN

Four balance trials were conducted to determine the effect of the antibiotic salinomycin (SM) on nitrogen (N) and energy utilization and fiber component digestibility by swine fed low- or high-fiber diets. Treatments were corn-soybean meal control (C), 10% oat hull (OH) and 20% wheat bran (WB) diets, each with or without SM (82 mg kg−1). In trial 1A, 12 female pigs (34.6 kg) were fed the C or WB diets with or without SM for a 9-d adaptation period followed by a 5-d feces and urine collection period. In trial IB, the same pigs (50.5 kg) were fed the C or OH diets with previous fiber and SM levels reversed. Trial 2 was conducted in a similar fashion with the order of the fiber sources fed reversed (OH in trial 2A, 32.3 kg; WB in trial 2B, 44.7 kg). SM increased apparent N digestibility and N absorption (P < 0.01) in the WB trials, but also increased (P < 0.05) urine N and thus SM did not affect N retention. Although apparent N absorption was decreased (P < 0.06) by SM in the OH trials, this largely reflected a lower N intake (P < 0.02) and SM did not alter N retention. SM did not alter apparent energy utilization by pigs fed the C or OH diets, but increased the coefficients for DE and ME (P < 0.01) and dry matter (DM) digestibility (P < 0.05) of pigs fed the WB diets. Both OH and WB decreased apparent N digestibility (P < 0.01), but did not affect N retention (P > 0.10). OH and WB decreased (P < 0.01) energy digestibility. Digestion coefficients for DM, acid detergent fiber, neutral detergent fiber, cellulose and hemi-cellulose were not affected by SM, but were depressed by OH and WB (P < 0.01). Estimated DM digestibilities (calculated by difference) for OH and WB were 4.9% and 61.3%, respectively. The data indicate that SM may influence energy and N utilization in pigs fed a degradable source of fiber (WB), but not in pigs fed a low-fiber diet (C) or a diet containing a high-fiber ingredient resistant to fermentation (OH). This suggests that SM may alter microbial fermentation in the gastrointestinal tract of the pig. Key words: Swine, fiber, salinomycin, nitrogen utilization, energy utilization


2016 ◽  
Vol 40 (6) ◽  
pp. 688-697 ◽  
Author(s):  
Antonia Leidiana Moreira ◽  
Arnaud Azevêdo Alves ◽  
Miguel Arcanjo Moreira Filho ◽  
Daniel Cézar da Silva ◽  
Bruno Spíndola Garcez ◽  
...  

ABSTRACT Leaves of babassu may be used in diets for goats under maintenance, however, it is a low-quality roughage due to its high fiber content. The chemical treatment by ammonia causes reduction in the proportion of the cell wall, in addition to providing non-protein nitrogen for the microbial protein synthesis in the rumen. Babassu palm hay ammoniated with 4% urea (BHAU4%) was evaluated in this study as a substitute for guinea grass hay in the maintenance diets of goats in terms of intake, digestibility in vivo, and the partitioning of energy and nitrogen compounds. Twenty Anglo-Nubian male goats were used in a randomised block design with four treatments (diets containing 0, 33, 66, or 100% BHAU4%) and five replicates (animals/block). The chemical compositions of the feeds, leftovers, faeces, nitrogen and crude energy of the urine were evaluated. In addition, the rumen fluid pH, the rumen N-NH3, and the blood serum urea were evaluated. The digestibility of the dry matter (DM), organic matter (OM), crud protein (CP), neutral detergent fiber (NDFap) and detergent acid (ADFap), corrected for ash and protein, declined (P<0.05) 0.0939, 0.0722, 0.0953, 0.1113, and 0.2666%, respectively, with the 1% inclusion of babassu palm hay in the diet. A negative linear effect (P<0.05) was observed in the ingested nitrogen (N), excretion of N in the urine, retained N, and N balance, with decreases of 0.15711, 0.0225 and 0.1071 g/day and 0.1388%, respectively, per percentage unit of the babassu palm hay included in the diet. The intake and digestibility of the DM and nutrients are reduced with the inclusion of BHAU4% in maintenance diets for goats, with positive nitrogen balance and stability of the ruminal pH and N-NH3 as well as blood urea, which presented values within the normal physiological range for goats.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1168
Author(s):  
Lu Wang ◽  
Qile Hu ◽  
Peili Li ◽  
Changhua Lai ◽  
Defa Li ◽  
...  

The study was conducted to develop and validate an equation to predict the metabolizable energy (ME) of double-low rapeseed cakes (DLRSC) for growing pigs based on their chemical compositions. In Experiment 1, 66 growing pigs (initial body weight 36.6 ± 4.1 kg) were allotted randomly to a completely randomized design with 11 diets. The diets included a corn–soybean meal basal diet and 10 test diets containing 19.22% DLRSC supplemented at the expense of corn, soybean meal, and lysine. Neutral detergent fiber (NDF), crude fiber (CF), and gross energy (GE) were the best predictors to determine ME. The best-fit prediction equation of ME (MJ/kg) was ME = 9.33 − 0.09 × NDF − 0.25 × CF + 0.59 × GE (R2 = 0.93). In Experiment 2, a total of 144 growing pigs (initial body weight 29.7 ± 2.7 kg), with six pigs per pen and six pens per treatment, were assigned randomly to four treatments in a completely randomized block design for a 28-day feeding trial. A corn–soybean meal basal diet was prepared, and three additional diets were formulated by adding 7%, 14%, and 21% DLRSC to the basal diet at the expense of soybean meal. All diets were formulated to provide equal standardized ileal digestibility (SID) Lys/ME ratio and SID essential amino acids/SID Lys ratio. Increasing dietary levels of DLRSC had no effect on average daily feed intake, average daily gain, and feed-to-gain ratio. The caloric efficiency of ME (31.83, 32.44, 31.95, and 32.69 MJ/kg, respectively) was not changed by increasing the dietary concentration of DLRSC. Increasing dietary levels of DLRSC linearly reduced (p < 0.05) the concentrations of triiodothyronine and tetraiodothyronine in serum, as well as apparent total tract digestibility of DM, GE, crude protein, acid detergent fiber, and organic matter of the diet. In conclusion, the ME prediction equation obtained in Experiment 1 accurately estimates the ME value of DLRSC fed to growing pigs.


2021 ◽  
Vol 5 ◽  
Author(s):  
Dajun Yu ◽  
Tiantian Lin ◽  
Kemper Sutton ◽  
Nick Lord ◽  
Renata Carneiro ◽  
...  

The consumption of edamame [Glycine max (L.) Merr.] in the US has rapidly increased due to its nutritional value and potential health benefits. In this study, 10 edamame genotypes were planted in duplicates in three different locations in the US—Whitethorne, Virginia (VA), Little Rock, Arkansas (AR), and Painter, VA. Edamame samples were harvested at the R6 stage of the bean development when beans filled 80–90% of the pod cavity. Afterward, comprehensive chemical composition analysis, including sugars, alanine, protein, oil, neutral detergent fiber (NDF), starch, ash, and moisture contents, were conducted on powdered samples using standard methods and the total sweetness was calculated based on the measured sugars and alanine contents. Significant effects of the location were observed on all chemical constituents of edamame (p &lt; 0.05). The average performance of the genotypes was higher in Whitethorne for the contents of free sucrose (59.29 mg/g), fructose (11.42 mg/g), glucose (5.38 mg/g), raffinose (5.32 mg/g), stachyose (2.34 mg/g), total sweetness (78.63 mg/g), and starch (15.14%) when compared to Little Rock and Painter. The highest soluble alanine (2.67 mg/g), NDF (9.00%), ash (5.60%), and moisture (70.36%) contents were found on edamame planted in Little Rock while edamame planted in Painter had the highest crude protein (43.11%) and oil (20.33%) contents. Significant effects of genotype were observed on most of the chemical constituents (p &lt; 0.05) except NDF and raffinose. Among the 10 genotypes, R13-5029 consistently had high sucrose content and total sweetness across the three locations, meanwhile it had relatively high protein and fiber contents. Overall, the results indicate that to breed better edamame genotypes in the US, both genotype and planting location should be taken into considerations.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 412-412
Author(s):  
Dong Uk Ha ◽  
Beob Gyun G Kim

Abstract The objective was to determine the influence of feed intake (FI) and fiber source on hindgut disappearance of energy and nutrients in pigs. Ten canulated barrows with an initial body weight (BW) of 38.3 ± 5.4 kg were allotted to a replicated 5 × 4 Latin square design with 5 treatments and 4 periods. A corn-soybean meal-based basal diet (BD) and 2 × 2 factorial treatment arrangement with 2 amounts of FI (9.0 and 4.5% × BW0.75) and 2 fiber sources of sugar beet pulp (SBP) and corn cob were used. Three diets were 1) a BD, 2) a diet replacing 30% of corn and soybean meal in BD with SBP as a source of soluble dietary fiber (SDF), and 3) a diet replacing 15% of corn and soybean meal in BD with corn cobs as a source of insoluble dietary fiber (IDF) to obtain a similar IDF concentration as in the SBP diet. Each period consisted of 7-d adaptation, 2-d fecal collection, and 2-d ileal collection. Apparent ileal digestibility (AID) of energy, dry matter (DM), organic matter (OM), and crude protein (CP) in SBP diet was less (P &lt; 0.001) than that in corn cob diet, whereas AID of neutral detergent fiber in SBP were greater (P &lt; 0.001) than in corn cob diet. Hindgut disappearance of energy, DM, OM, neutral detergent fiber, and acid detergent fiber in SBP diet was greater (P &lt; 0.05) than that in corn cob diet. However, no interaction between FI and fiber source on the AID, apparent total tract digestibility, and hindgut disappearance of nutrients was observed. Overall, hindgut disappearance of nutrients in sugar beet pulp diet was greater than that in corn cob diet. However, the influence of feed intake or the interaction between feed intake and fiber source was not observed.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 411-412
Author(s):  
Dong Uk Ha ◽  
Beob Gyun G Kim

Abstract The objective was to determine the influence of feed intake (FI) and fiber source on the apparent total tract digestibility (ATTD) of gross energy (GE) and nutrients in pigs. Twelve barrows with an initial body weight (BW) of 34.0 ± 2.6 kg were allotted to a replicated 6 × 4 Latin square design with 6 treatments and 4 periods. The 6 treatments were consisted of a 2 × 3 factorial arrangement with 2 amounts of FI (9.0 and 4.5% × BW0.75) and 3 dietary fiber sources. Three diets were 1) a corn-soybean meal-based basal diet (BD), 2) a diet replacing 30% of corn and soybean meal in BD with sugar beet pulp (SBP) as a source of soluble dietary fiber (SDF), and 3) a diet replacing 15% of corn and soybean meal in BD with corn cobs as a source of insoluble dietary fiber (IDF) to obtain a similar IDF concentration as in the SBP diet. Following a 6-d adaptation, feces were collected for 5 d. The ATTD of GE, dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) in diets was greater (P &lt; 0.05) for pigs fed at 4.5% of BW0.75 compared with those fed at 9.0% of BW0.75. The ATTD of GE, DM, OM, NDF, and ADF in SBP diet was greater (P &lt; 0.01) than that in corn cob diet. However, there was no interaction between FI and fiber source on energy and nutrient digestibility. The ATTD of GE, DM, OM, protein, NDF, and ADF in SBP was greater (P &lt; 0.01) than that in corn cobs. In conclusion, energy and nutrient digestibility values were increased by reduced feed intake and were greater in sugar beet pulp than in corn cobs without interaction between feed intake and fiber source.


2015 ◽  
Vol 61 (10) ◽  
pp. 771-784 ◽  
Author(s):  
Yanli Zhu ◽  
Chunyang Wang ◽  
Fuchang Li

The objective of this experiment was to determine whether changing the dietary neutral detergent fiber (NDF)/starch ratio affected caecal microbiota when 4 different diets (diet A: 2.3 NDF/starch, diet B: 1.9, diet C: 1.4, diet D: 1.0) were formulated. A total of 200 weaned rabbits (35 days old, 50 per group) were used for the experiment, which started after an adaptation period of 7 days (i.e., day 42). Caecal contents were obtained from rabbits fed different NDF/starch diets at 52, 62, 72, and 82 days of life. The bacterial community structure was characterized by high-throughput 16S rRNA sequencing. Firmicutes, Actinobacteria, Synergistetes, and Tenericutes did not significantly change with diet or age. However, Bacteroidetes (P < 0.05), Proteobacteria (P < 0.01), and Verrucomicrobia (P < 0.05) reads were significantly affected by diet, and Proteobacteria (P < 0.01) and Verrucomicrobia (P < 0.05) reads were significantly influenced by age. At the genus level, Escherichia/Shigella (P < 0.01) was overrepresented in diet A (high fiber) relative to diet D (high starch) in 52- and 62-day-old rabbits. Venn diagrams and heat map plot analyses revealed that the number of gut species shared between animals with different diet treatments increased with age. These results suggest that dietary fiber per starch ratios and age significantly alter the composition of caecal microbiota in growing rabbits.


Sign in / Sign up

Export Citation Format

Share Document