EFFECT OF SALINOMYCIN ON NUTRIENT ABSORPTION AND RETENTION BY GROWING PIGS FED CORN-SOYBEAN MEAL DIETS WITH OR WITHOUT OAT HULLS OR WHEAT BRAN

1986 ◽  
Vol 66 (1) ◽  
pp. 257-265 ◽  
Author(s):  
ROBERT J. MOORE ◽  
E. T. KORNEGAY ◽  
M. D. LINDEMANN

Four balance trials were conducted to determine the effect of the antibiotic salinomycin (SM) on nitrogen (N) and energy utilization and fiber component digestibility by swine fed low- or high-fiber diets. Treatments were corn-soybean meal control (C), 10% oat hull (OH) and 20% wheat bran (WB) diets, each with or without SM (82 mg kg−1). In trial 1A, 12 female pigs (34.6 kg) were fed the C or WB diets with or without SM for a 9-d adaptation period followed by a 5-d feces and urine collection period. In trial IB, the same pigs (50.5 kg) were fed the C or OH diets with previous fiber and SM levels reversed. Trial 2 was conducted in a similar fashion with the order of the fiber sources fed reversed (OH in trial 2A, 32.3 kg; WB in trial 2B, 44.7 kg). SM increased apparent N digestibility and N absorption (P < 0.01) in the WB trials, but also increased (P < 0.05) urine N and thus SM did not affect N retention. Although apparent N absorption was decreased (P < 0.06) by SM in the OH trials, this largely reflected a lower N intake (P < 0.02) and SM did not alter N retention. SM did not alter apparent energy utilization by pigs fed the C or OH diets, but increased the coefficients for DE and ME (P < 0.01) and dry matter (DM) digestibility (P < 0.05) of pigs fed the WB diets. Both OH and WB decreased apparent N digestibility (P < 0.01), but did not affect N retention (P > 0.10). OH and WB decreased (P < 0.01) energy digestibility. Digestion coefficients for DM, acid detergent fiber, neutral detergent fiber, cellulose and hemi-cellulose were not affected by SM, but were depressed by OH and WB (P < 0.01). Estimated DM digestibilities (calculated by difference) for OH and WB were 4.9% and 61.3%, respectively. The data indicate that SM may influence energy and N utilization in pigs fed a degradable source of fiber (WB), but not in pigs fed a low-fiber diet (C) or a diet containing a high-fiber ingredient resistant to fermentation (OH). This suggests that SM may alter microbial fermentation in the gastrointestinal tract of the pig. Key words: Swine, fiber, salinomycin, nitrogen utilization, energy utilization

Author(s):  
Amy L Petry ◽  
Nichole F Huntley ◽  
Michael R Bedford ◽  
John F Patience

Abstract In theory, supplementing xylanase in corn-based swine diets should improve nutrient and energy digestibility and fiber fermentability, but its efficacy is inconsistent. The experimental objective was to investigate the impact of xylanase on energy and nutrient digestibility, digesta viscosity, and fermentation when pigs are fed a diet high in insoluble fiber (&gt;20% neutral detergent fiber; NDF) and given a 46-d dietary adaptation period. Three replicates of 20 growing gilts were blocked by initial body weight, individually housed, and assigned to 1 of 4 dietary treatments: a low-fiber control (LF) with 7.5% NDF, a 30% corn bran high-fiber control (HF; 21.9% NDF), HF+100 mg xylanase/kg [HF+XY, (Econase XT 25P; AB Vista, Marlborough, UK)] providing 16,000 birch xylan units/kg; and HF+50 mg arabinoxylan-oligosaccharide (AXOS) product/kg [HF+AX, (XOS 35A; Shandong Longlive Biotechnology, Shandong, China)] providing AXOS with 3-7 degrees of polymerization. Gilts were allowed ad libitum access to fed for 36-d. On d 36, pigs were housed in metabolism crates for a 10-d period, limit fed, and feces were collected. On d 46, pigs were euthanized and ileal, cecal, and colonic digesta were collected. Data were analyzed as a linear mixed model with block and replication as random effects, and treatment as a fixed effect. Compared with LF, HF reduced the apparent ileal digestibility (AID), apparent cecal digestibility (ACED), apparent colonic digestibility (ACOD), and apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), crude protein (CP), acid detergent fiber (ADF), NDF, and hemicellulose (P&lt;0.01). Relative to HF, HF+XY improved the AID of GE, CP, and NDF (P&lt;0.05), and improved the ACED, ACOD, and ATTD of DM, GE, CP, NDF, ADF, and hemicellulose (P&lt;0.05). Among treatments, pigs fed HF had increased hindgut DM disappearance (P=0.031). Relative to HF, HF+XY improved cecal disappearance of DM (162 vs. 98g; P=0.008) and NDF (44 vs. 13g; P&lt;0.01). Pigs fed xylanase had a greater proportion of acetate in cecal digesta and butyrate in colonic digesta among treatments (P&lt;0.05). Compared with LF, HF increased ileal, cecal, and colonic viscosity, but HF+XY decreased ileal viscosity compared with HF (P&lt;0.001). In conclusion, increased insoluble corn-based fiber decreases digestibility, reduces cecal fermentation, and increases digesta viscosity, but supplementing xylanase partially mitigated that effect.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 228 ◽  
Author(s):  
Zhengqun Liu ◽  
Ruqing Zhong ◽  
Liang Chen ◽  
Fei Xie ◽  
Kai Li ◽  
...  

This study was conducted to evaluate the effect of collection durations on the energy values and nutrient digestibility of high-fiber diets in growing pigs with a time-based total fecal collection method. A total of 24 barrows (body weight (BW): 31.1 ± 1.5 kg) were allotted to a completely randomized design with three diets. Diets included a corn–soybean meal (CSM) basal diet and two additional diets containing 20% sugar beet pulp (SBP) or defatted rice bran (DFRB) by replacing corn, soybean meal, and soybean oil in the CSM diet, respectively. Each diet was fed to eight barrows for a 7-day adaptation period followed by a 7-day total feces and urine collection period. The 7-day collection duration was divided into three collection phases, namely, phase 1 (days 8 to 11), phase 2 (days 11 to 13), and phase 3 (days 13 to 15). Then, similar portions of feces and urine from the different collection phases were composited into three additional samples (days 8 to 11, days 8 to 13, and days 8 to 15, respectively). The results showed that the digestible energy (DE), metabolizable energy (ME), and apparent total tract digestibility (ATTD) of gross energy (GE) and nutrient in experimental diets decreased linearly as the collection durations increased from a 3-day to a 7-day collection (p < 0.05). However, there were no differences in the energy values, GE, and nutrient digestibility of diets and of high-fiber ingredients between the 5-day and 7-day collection durations. In conclusion, this study suggests that a 5-day collection duration is adequate to determine the energy values and nutrient digestibility of high-fiber diets containing SBP or DFRB in growing pigs by the time-based total fecal collection method.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1846
Author(s):  
Shunfen Zhang ◽  
Ruqing Zhong ◽  
Lixiang Gao ◽  
Zhengqun Liu ◽  
Liang Chen ◽  
...  

This study aimed to evaluate the effects of optimal carbohydrase mixture (OCM) on macronutrients and amino acid digestibility and the digestible energy (DE) in growing pigs fed the corn-soybean meal-based diet (CSM) and the wheat-soybean meal-based diet (WSM). A total of 36 ileal-cannulated pigs (50.9 ± 4.9 kg initial body weight) were allotted to four dietary treatments randomly, which included CSM and WSM diets, and two diets supplied with corresponding OCM. These OCMs were screened using an in vitro method from our previous study. After the five day adaptation period, fecal samples were collected from d six to seven, and ileal digesta samples were collected on d 8 and 10. Chromic oxide was added as an indigestible marker. The results show that the addition of OCM improved the apparent ileal digestibility (AID) of dry matter (DM), ash, carbohydrate (CHO), neutral detergent fiber, and gross energy (GE) and the apparent total tract digestibility (ATTD) of DM, CHO, and GE in CSM diet (p < 0.05), but reduced the apparent hindgut disappearance (AHD) of DM in CSM diet (p < 0.05). The ATTD of DM, crude protein (CP), ether extract (EE), ash, and GE and the AHD of DM, CP, EE, ash, CHO, and GE in WSM diet were improved by the OCM addition (p < 0.05), whereas the AID of DM, CP, ash, CHO, and GE were decreased (p < 0.05). The respective DE contents in CSM and WSM diets were increased from 15.45 to 15.74 MJ/kg and 15.03 to 15.49 MJ/kg under the effects of OCM (p < 0.05). Similar to the trend of AID of CP, the OCM addition increased the AID and standardized ileal digestibility (SID) of Ile, Thr, and Cys in CSM diet, but decreased the AID and SID of Ile, Phe, Thr, Val, Ala, Pro, Ser, and Tyr in WSM diet. In conclusion, the OCMs screened by an in vitro method could improve the total tract nutrient digestibility and DE for pigs fed corn-based diet or wheat-based diet but had inconsistent effects on the ileal digestibility of nutrients and energy.


1980 ◽  
Vol 60 (3) ◽  
pp. 717-726 ◽  
Author(s):  
J. J. KENNELLY ◽  
F. X. AHERNE

The influence of dietary crude fiber (CF), and the methods used in formulating high-fiber diets, on digestibility coefficients were investigated. Following a 10-wk adaptation period to the four dietary treatments, two barrows and two gilts per treatment, of an average initial weight of 67 kg, were transferred to metabolism crates. Diet 1 contained 14.1 MJ digestible energy (DE) per kg, 17.1% crude protein (CP) and 4.1% crude fiber (CF). Diets 2, 3 and 4 each contained 22% oat hulls, which were added to the diets isonitrogenously (diet 2), by simple dilution (diet 3), or isonitrogenously and isoenergetically (diet 4). The three diets contained, respectively, 9.8, 9.6 and 10.2% CF, 12.2, 12.5 and 14.8 MJ DE/kg and 17.0, 14.4 and 17.3% CP. Pigs fed diet 1 had significantly higher dry matter (DM) digestibility than those fed the higher fiber diets. Dry matter digestibility was also significantly influenced by the method of addition of CF with coefficients of 70.2, 72.8 and 65.0% for diets 2, 3 and 4, respectively. The inclusion of 11.5% tallow in diet 4 significantly improved ether extract digestibility over that obtained with diets 1, 2 and 3. Apparent digestibilities of nitrogen and amino acids were unaffected by the level of CF in the diet. Qualitative and quantitative changes in the energy and nitrogen level of diets with similar CF levels were associated with significant differences in the digestibility of CF, neutral detergent fiber and acid detergent fiber.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1490
Author(s):  
Pan Yang ◽  
Jian Jun Ni ◽  
Jin Biao Zhao ◽  
Gang Zhang ◽  
Cheng Fei Huang

The objectives of this study were to determine the chemical compositions, digestible energy (DE), and metabolizable energy (ME) in corn, soybean meal (SBM) and wheat bran (WB) fed to growing pigs, and to develop regression equations for predicting DE and ME. Three separate experiments were conducted to determine DE and ME of corn, SBM, and WB. The DE and ME in corn were determined directly using 10 barrows allotted to a replicated 5 × 5 Latin square design, and the diets were formulated with one of 10 corn samples. The DE and ME in SBM and WB were determined by difference using two corn basal diets and 10 corn-SBM or 10 corn-SBM-WB diets, which were allotted to a replicated 6 × 6 Latin square design. Ten corn samples were obtained from the main corn producing areas of China. Ten SBM samples were obtained from nine different crushing facilities in nine provinces in China. Ten WB samples were collected from different feed mills of China. Samples were analyzed for dry matter (DM), crude protein (CP), ether extract (EE), ash, neutral detergent fiber (NDF), acid detergent fiber (ADF), gross energy (GE), and soluble carbohydrates (SCHO). The best-fit equations for corn were DE (MJ/kg DM) = 20.18 − 0.76 × EE (%) and ME (MJ/kg DM) = 5.74 + 1.11 × DE (MJ/kg DM) − 0.33 × CP (%) − 0.07 × SCHO (%). The best-fit equations for SBM were DE (MJ/kg DM) = 42.91 − 3.43 × Ash (%) − 0.20 × NDF (%) + 0.09 × ADF (%) and ME (MJ/kg DM) = −21.67 + 0.89 × DE (MJ/kg DM) − 1.06 × GE (MJ/kg DM). The best-fit equations for WB were DE (MJ/kg DM) = −7.09 + 1.54 × CP (%) − 0.25 × NDF (%) − 0.32 × ADF (%) + 0.23 × Ash (%) and ME (MJ/kg DM) = 0.02 + 0.96 × DE (MJ/kg DM). The chemical composition of corn, SBM, and WB can vary substantially from zone to zone, resulting in considerable variation in its available energy value for pig. The DE and ME of corn, SBM and WB for growing pigs can be predicted based on their chemical compositions.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 80-80
Author(s):  
Jinlong Zhu ◽  
Gerald C Shurson ◽  
Lynsey Whitacre ◽  
Ignacio R Ipharraguerre ◽  
Pedro E Urriola

Abstract The objective of this study was to determine the effects of an Aspergillus oryzae prebiotic (AOP, Amaferm®) on nutrient digestibility in growing pigs fed high fiber diets. Eighteen growing barrows (initial BW = 50.60 ± 4.90 kg) were surgically equipped with a T-cannula at the distal ileum. Three diets were formulated by including 29.65% corn-distillers dried grains with solubles (DDGS), 36.65% rice bran (RB) or 24.59% wheat middlings (WM) in corn and soybean meal-based diets to meet nutrient requirements for 50 to 75 kg growing pigs. Three additional diets were formulated by supplementing 0.05% AOP at the expense of corn in DDGS (DDGS + AOP), RB (RB + AOP), and wheat middlings (WM + AOP) diets. Pigs were allotted randomly to a triplicated 6 × 2 Youden square design with 6 diets and 2 successive periods. Feces and ileal digesta were collected for 2 d after a 21 d adaptation period, and nutrient content was analyzed to calculate apparent total tract digestibility (ATTD) and apparent ileal digestibility (AID). Standardized ileal digestibility (SID) of amino acids was calculated by correcting AID with basal endogenous amino acid losses determined from the same set of pigs. Supplementation of 0.05% AOP increased (P &lt; 0.05) ATTD of DM, GE, CP, NDF, and ash in DDGS, RB, and WM diets. Diet DE was 35 kcal/kg greater (P &lt; 0.05) in pigs fed AOP supplemented diets compared with those fed diets without AOP. Pigs fed DDGS+AOP diet had greater (P &lt; 0.05) AID of ether extract compared to those fed DDGS diet. However, supplementation of AOP did not (P &gt; 0.05) affect AID of GE, DM, CP, NDF, ash or SID of amino acids. In conclusion, supplementation of AOP in high fiber diets containing DDGS, RB, or WM increased total tract energy value and nutrient digestibility.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 394-395
Author(s):  
Jongkeon Kim ◽  
Yun Yeong Jo ◽  
Beob Gyun G Kim

Abstract The objective of this study was to determine the digestible energy (DE) and metabolizable energy (ME) concentrations in high-fiber ingredients fed to growing pigs. Twelve barrows with an initial body weight of 57.5 kg (SD = 5.7) were individually housed in metabolism crates. A replicated 6 × 3 incomplete Latin square design with 12 animals, 6 experimental diets and 3 periods was employed. A basal diet was composed of 75.0% corn and 22.7% soybean meal (SBM) as the sole energy sources. Four experimental diets were prepared by replacing 40% of corn and SBM with soybean hulls (SH), corn gluten feed (CGF), wheat bran (WB), or rice bran (RB). An additional diet was prepared by replacing 10% of corn and SBM with cashew nut hulls (CNH). Each period consisted of a 4-d adaptation period and a 4-d collection period, and the marker-to-marker procedure was used for total collection of feces and urine. The DE and ME values in RB (3,969 and 3,936 kcal/kg DM) were greater (P &lt; 0.05) than those in CGF (2,654 and 2,520 kcal/kg DM) and SH (2,492 and 2,541 kcal/kg DM) and the energy values in WB (3,162 and 3,118 kcal/kg DM) were not different from those in RB, CGF, or SH. The DE and ME values in CNH (350 and 572 kcal/kg DM) were less (P &lt; 0.05) than those in all other test ingredients. In conclusion, energy concentrations in RB were greatest among the high-fiber test ingredients, whereas CNH had the lowest values.


Author(s):  
Bonjin Koo ◽  
Olumide Adeshakin ◽  
Charles Martin Nyachoti

Abstract An experiment was performed to evaluate the energy content of extruded-expelled soybean meal (EESBM) and the effects of heat treatment on energy utilization in growing pigs. Eighteen growing barrows (18.03 ± 0.61 kg initial body weight) were individually housed in metabolism crates and randomly allotted to one of three dietary treatments (six replicates/treatment). The three experimental diets were: a corn-soybean meal-based basal diet and two test diets with simple substitution of a basal diet with intact EESBM or heat-treated EESBM (heat-EESBM) at a 7:3 ratio. Intact EESBM was autoclaved at 121°C for 60 min to make heat-treated EESBM. Pigs were fed the experimental diets for 16 d, including 10 d for adaptation and 6 d for total collection of feces and urine. Pigs were then moved into indirect calorimetry chambers to determine 24-h heat production and 12-h fasting heat production. The energy content of EESBM was calculated using the difference method. Data were analyzed using the Mixed procedure of SAS with the individual pig as the experimental unit. Pigs fed heat-EESBM diets showed lower (P &lt; 0.05) apparent total tract digestibility of dry matter (DM), gross energy, and nitrogen than those fed intact EESBM. A trend (P ≤ 0.10) was observed for greater heat increments in pigs fed intact EESBM than those fed heat-EESBM. This resulted in intact EESBM having greater (P &lt; 0.05) digestible energy (DE) and metabolizable energy (ME) contents than heat-EESBM. However, no difference was observed in net energy (NE) contents between intact EESBM and heat-EESBM, showing a tendency (P ≤ 0.10) toward an increase in NE/ME efficiency in heat-EESBM, but comparable NE contents between intact and heat-EESBM. In conclusion, respective values of DE, ME, and NE are 4,591 kcal/kg, 4,099 kcal/kg, and 3,189 kcal/kg in intact EESBM on a DM basis. It is recommended to use NE values of feedstuffs that are exposed to heat for accurate diet formulation.


Sign in / Sign up

Export Citation Format

Share Document