scholarly journals Mathematical Modelling of the Fruit-Stone Culture Seeds Calibration Process Using Flat Sieves

2021 ◽  
Vol 24 (3) ◽  
pp. 119-123
Author(s):  
Oleksandr Karaiev ◽  
Larysa Bondarenko ◽  
Serhii Halko ◽  
Oleksandr Miroshnyk ◽  
Oleksandr Vershkov ◽  
...  

Abstract The paper provided describes a mathematical model of calibration process of fruit-stone culture seeds of cherry, sweet cherry, cherry-plum, apricot and almond using flat sieves with impact shock ball cleaners oscillating in the horizontal plane. It has been defined that the mathematical expectation of time of knocking out the fruit-stone from the sieve opening T ⌢ \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over T} is the minimum value of ratio of average time of complete ball motion cycle in space under sieve to the probability of knocking out the stone by a ball with the kinetic energy level of 2 Mj. The dependences of energy distribution density of ball on impact on the sieve have been obtained, based on which the intervals of ball cleaner parameters have been determined, i.e. the ball diameter D belongs to the interval 25–35 mm; the space height H under sorting sieve belongs to the interval 1.2D–1.4D mm; the value range for distance between rods t belongs to the interval 0.5D–0.7D mm. Using the method of golden section, the following parameters of ball cleaner were obtained: D = 33 mm, t = 23 mm, H = 40 mm. The parameters obtained provide mathematical expectation of time of knocking out the fruit-stone from the sieve opening T ⌢ \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over T} = 0.03 s. Consequently, the average ball velocity v ⌢ \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over v} is = 0.4 m∙s-1, and the average ball path is L ⌢ \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}}\over L} = 0.006 m.

2021 ◽  
pp. 46-49
Author(s):  
D. Yu. Potapova ◽  

The issue of improving the efficiency of the functioning of airlines in the air transportation market is considered. A statistical and mathematical model has been developed and allows us to make a prognosis of the main indicators of the airline’s activity. This model is a distribution of a random variable, which distribution density is described by the Gauss’ Law. The influence of the correlation coefficient value on the accuracy of the prognosis, the average quadratic values on the mathematical expectation of the predicted value is shown. The given model allows to increase the accuracy of the prognosis of the indicators of the airline work.


2021 ◽  
Vol 5 (45) ◽  
pp. 779-783
Author(s):  
A.Yu. Vdovin

When studying the space path of a cloud of pellets from a shotgun and evaluating its parameters, it is advisable to have a simulation model of the optical sensor signal when a shot sheaf crosses the light screen. To create such a model, you need to get the relationship between the scale parameter in the Rayleigh distribution and the time span of the shot sheaf. Studies of the temporal distribution density of the shot sheaf span are performed, and graphs of the distribution density of the span for near-real situations are constructed. A linear dependence of the mathematical expectation of the span distribution density on the scale parameter in the Rayleigh distribution is established. A simplified expression is obtained for calculating the mathematical expectation of the time span of the shot sheaf. Statistical modeling confirmed the possibility of the practical use of the proposed formulas, including with a large number of pellets (up to 1000). The dependence of the mathematical expectation of the span on the number of pellets is investigated, its approximation by various functions is carried out, and the approximation errors are estimated. The research conducted allows us to create a simulation model of the optical sensor signal when the shot sheaf crosses the light screen on the basis of empirical data on the real-signal duration (with averaged measurement data for several shots being helpful).


2019 ◽  
Vol 3 (3) ◽  
pp. 652
Author(s):  
Tati Nurhayati

Reading comprehension is a reading activity that aims to obtain adequate understanding and interpretation of the meanings contained in written symbols. the reading process is divided into three stages, such as pre-reading, reading, and post-reading. But the reality is that many of the students still experience difficulties in reading comprehension learning. Therefore, researchers applied an Accelerated Learning approach to improve students' reading comprehension skills. The results showed, the assessment of the process of reading students' skills for each assessment indicator was in the value range of 78.35% to 87.35% which was included in the good and very good category. While the results of the assessment of the overall reading skills process were 82.32% with a very good category. Based on the results of the study it can be concluded that learning based on the accelerated learning approach can enhance reading comprehension skills of students in class V of the Primary school of 011 Air Emas, Singingi District.


2000 ◽  
Vol 170 (11) ◽  
pp. 1253
Author(s):  
Valerian V. Popkov ◽  
Evgenii V. Shipitsyn
Keyword(s):  

2020 ◽  
Vol 7 (2) ◽  
pp. 34-41
Author(s):  
VLADIMIR NIKONOV ◽  
◽  
ANTON ZOBOV ◽  

The construction and selection of a suitable bijective function, that is, substitution, is now becoming an important applied task, particularly for building block encryption systems. Many articles have suggested using different approaches to determining the quality of substitution, but most of them are highly computationally complex. The solution of this problem will significantly expand the range of methods for constructing and analyzing scheme in information protection systems. The purpose of research is to find easily measurable characteristics of substitutions, allowing to evaluate their quality, and also measures of the proximity of a particular substitutions to a random one, or its distance from it. For this purpose, several characteristics were proposed in this work: difference and polynomial, and their mathematical expectation was found, as well as variance for the difference characteristic. This allows us to make a conclusion about its quality by comparing the result of calculating the characteristic for a particular substitution with the calculated mathematical expectation. From a computational point of view, the thesises of the article are of exceptional interest due to the simplicity of the algorithm for quantifying the quality of bijective function substitutions. By its nature, the operation of calculating the difference characteristic carries out a simple summation of integer terms in a fixed and small range. Such an operation, both in the modern and in the prospective element base, is embedded in the logic of a wide range of functional elements, especially when implementing computational actions in the optical range, or on other carriers related to the field of nanotechnology.


Author(s):  
Nicholas Mee

Celestial Tapestry places mathematics within a vibrant cultural and historical context, highlighting links to the visual arts and design, and broader areas of artistic creativity. Threads are woven together telling of surprising influences that have passed between the arts and mathematics. The story involves many intriguing characters: Gaston Julia, who laid the foundations for fractals and computer art while recovering in hospital after suffering serious injury in the First World War; Charles Howard, Hinton who was imprisoned for bigamy but whose books had a huge influence on twentieth-century art; Michael Scott, the Scottish necromancer who was the dedicatee of Fibonacci’s Book of Calculation, the most important medieval book of mathematics; Richard of Wallingford, the pioneer clockmaker who suffered from leprosy and who never recovered from a lightning strike on his bedchamber; Alicia Stott Boole, the Victorian housewife who amazed mathematicians with her intuition for higher-dimensional space. The book includes more than 200 colour illustrations, puzzles to engage the reader, and many remarkable tales: the secret message in Hans Holbein’s The Ambassadors; the link between Viking runes, a Milanese banking dynasty, and modern sculpture; the connection between astrology, religion, and the Apocalypse; binary numbers and the I Ching. It also explains topics on the school mathematics curriculum: algorithms; arithmetic progressions; combinations and permutations; number sequences; the axiomatic method; geometrical proof; tessellations and polyhedra, as well as many essential topics for arts and humanities students: single-point perspective; fractals; computer art; the golden section; the higher-dimensional inspiration behind modern art.


2020 ◽  
Vol 9 (1) ◽  
pp. 359-365
Author(s):  
Hui Shu ◽  
Yujian Song ◽  
Qiang Liu ◽  
Maobin Luo

AbstractTiO2 has many advantages, such as UV resistance, thermal stability, and antibacterial; the attention toward TiO2 composite materials (TCMs) is rapidly increasing in the protection of stone culture relics. An innovative rod-shaped TCM was synthesized in this study. The structure and morphology of TCM were studied by X-ray diffraction and scanning electron microscopy. The acid resistance, weather resistance, hydrophilicity, and photocatalytic performance of TCM had been investigated. The experimental results indicated that TCM has good protection effects. The stone sample treated with TCM has stronger acid resistance and weather resistance, better hydrophilicity, and more excellent photocatalytic activity compared with the untreated stone. More importantly, the stone treated with TCM has better acid resistance and weather resistance than that treated with normal shaped TiO2 materials of the previous study. This work describes an effective way to protect stone cultural relics.


Networks ◽  
2021 ◽  
Author(s):  
Evgeny Gurevsky ◽  
Dmitry Kopelevich ◽  
Sergey Kovalev ◽  
Mikhail Y. Kovalyov
Keyword(s):  

Author(s):  
Sagnik Pal ◽  
Ranjan Das

The present paper introduces an accurate numerical procedure to assess the internal thermal energy generation in an annular porous-finned heat sink from the sole assessment of surface temperature profile using the golden section search technique. All possible heat transfer modes and temperature dependence of all thermal parameters are accounted for in the present nonlinear model. At first, the direct problem is numerically solved using the Runge–Kutta method, whereas for predicting the prevailing heat generation within a given generalized fin domain an inverse method is used with the aid of the golden section search technique. After simplifications, the proposed scheme is credibly verified with other methodologies reported in the existing literature. Numerical predictions are performed under different levels of Gaussian noise from which accurate reconstructions are observed for measurement error up to 20%. The sensitivity study deciphers that the surface temperature field in itself is a strong function of the surface porosity, and the same is controlled through a joint trade-off among heat generation and other thermo-geometrical parameters. The present results acquired from the golden section search technique-assisted inverse method are proposed to be suitable for designing effective and robust porous fin heat sinks in order to deliver safe and enhanced heat transfer along with significant weight reduction with respect to the conventionally used systems. The present inverse estimation technique is proposed to be robust as it can be easily tailored to analyse all possible geometries manufactured from any material in a more accurate manner by taking into account all feasible heat transfer modes.


Sign in / Sign up

Export Citation Format

Share Document