scholarly journals Effect of UV light on food quality and safety

2019 ◽  
Vol 12 (1) ◽  
pp. 21-41
Author(s):  
J. Csapó ◽  
J. Prokisch ◽  
Cs. Albert ◽  
P. Sipos

Abstract The recent years have seen a great number of instances when ultraviolet (UV) radiation was used in the preservation process of all sorts of foods. Since the purine and pyrimidine bases of DNA and RNA absorb well the 254 nm radiation, its application with the use of a correct dosage can result in disinfections of various orders of magnitude. It can be particularly effective in cases where technology does not allow a more intensive heat treatment. When used properly, UV treatment can be a competitive procedure in the case of foodstuffs where the large surface area allows for UV rays to penetrate the entire volume of the substance. Incorrectly applied UV treatment may change the composition of foods. Free-radical as well as photochemical reactions can digest the proteins, damage the antioxidants, oxidize the lipids, make changes to the colour and substance, and produce undesirable flavourings and odorous substances. Some vitamins are particularly sensitive to UV irradiation in the course of which losses could reach even 50%. Photosensitive water-soluble vitamins are vitamin C, B12, B6, B2 and folic acid, while vitamins A, K and E are the fat soluble sensitive to light, carotene being the only provitamin with such properties. On the other hand, UV treatment can be a useful tool of food safety because of the photosensitivity of fungal toxins.

2020 ◽  
Vol 90 (5-6) ◽  
pp. 439-447 ◽  
Author(s):  
Andrew Hadinata Lie ◽  
Maria V Chandra-Hioe ◽  
Jayashree Arcot

Abstract. The stability of B12 vitamers is affected by interaction with other water-soluble vitamins, UV light, heat, and pH. This study compared the degradation losses in cyanocobalamin, hydroxocobalamin and methylcobalamin due to the physicochemical exposure before and after the addition of sorbitol. The degradation losses of cyanocobalamin in the presence of increasing concentrations of thiamin and niacin ranged between 6%-13% and added sorbitol significantly prevented the loss of cyanocobalamin (p<0.05). Hydroxocobalamin and methylcobalamin exhibited degradation losses ranging from 24%–26% and 48%–76%, respectively; added sorbitol significantly minimised the loss to 10% and 20%, respectively (p < 0.05). Methylcobalamin was the most susceptible to degradation when co-existing with ascorbic acid, followed by hydroxocobalamin and cyanocobalamin. The presence of ascorbic acid caused the greatest degradation loss in methylcobalamin (70%-76%), which was minimised to 16% with added sorbitol (p < 0.05). Heat exposure (100 °C, 60 minutes) caused a greater loss of cyanocobalamin (38%) than UV exposure (4%). However, degradation losses in hydroxocobalamin and methylcobalamin due to UV and heat exposures were comparable (>30%). At pH 3, methylcobalamin was the most unstable showing 79% degradation loss, which was down to 12% after sorbitol was added (p < 0.05). The losses of cyanocobalamin at pH 3 and pH 9 (~15%) were prevented by adding sorbitol. Addition of sorbitol to hydroxocobalamin at pH 3 and pH 9 reduced the loss by only 6%. The results showed that cyanocobalamin was the most stable, followed by hydroxocobalamin and methylcobalamin. Added sorbitol was sufficient to significantly enhance the stability of cobalamins against degradative agents and conditions.


1997 ◽  
Vol 60 (6) ◽  
pp. 639-643 ◽  
Author(s):  
FUENG-LIN KUO ◽  
JOHN B. CAREY ◽  
STEVEN C. RICKE

The effects were investigated of 254-nm UV radiation on populations of Salmonella typhimurium, aerobes, and molds on the shells of eggs. In the first experiment, the CFU of attached S. typhimurium cells on unwashed clean shell eggs were determined after 0, 1, 3, 5, and 7 min of UV treatment (620 μW/cm2) on both ends of the egg. All UV treatments significantly reduced S. typhimurium CFU (P &lt; .01). UVtreatment (620 μW/cm2) in 1-min alternating light and dark cycles for 5 min (three light and two dark) was compared to 0, 3, and 5 min of UV treatment. No significant differences in microbial populations were observed among light and dark cycles and the other UV treatments. In a subsequent experiment, the same UV treatments were utilized to evaluate photoreactivation. After UV exposure, eggs were exposed to 1 h of fluorescent light or I h of darkness or cultured immediately. S. typhimurium CFU were significantly (P &lt; .01) reduced by the UV treatments. However, no significant differences between microbial populations exposed to UV treatment and UV radiation plus photoreactivation were detected. For studies of aerobic bacteria and molds, different UV treatment times (0, 15, and 30 min) at the intensity of 620 μW/cm2 and different intensities (620, 1350, and 1720 μW/cm2) for 15 min were evaluated. Mold CFU per egg were either 0 or 1 for all UV treatments and a 99% reduction of CFU of aerobic bacteria per egg were observed for all UV treatments. It appears from these studies that UV light can significantly reduce populations of S. typhimurium, aerobes, and molds on shell eggs.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1263
Author(s):  
Cornelia Vasile ◽  
Mihaela Baican

Food packaging is designed to protect foods, to provide required information about the food, and to make food handling convenient for distribution to consumers. Packaging has a crucial role in the process of food quality, safety, and shelf-life extension. Possible interactions between food and packaging are important in what is concerning food quality and safety. This review tries to offer a picture of the most important types of active packaging emphasizing the controlled/target release antimicrobial and/or antioxidant packaging including system design, different methods of polymer matrix modification, and processing. The testing methods for the appreciation of the performance of active food packaging, as well as mechanisms and kinetics implied in active compounds release, are summarized. During the last years, many fast advancements in packaging technology appeared, including intelligent or smart packaging (IOSP), (i.e., time–temperature indicators (TTIs), gas indicators, radiofrequency identification (RFID), and others). Legislation is also discussed.


2013 ◽  
Vol 791-793 ◽  
pp. 2171-2174
Author(s):  
Yuan Fen Yin ◽  
Yun Deng ◽  
Xiu Li Sang

Behavior strategy of food enterprises exerts a direct influence on food quality and safety. Against the backdrop of value perception differences on food quality and safety between different food enterprises, this paper establishes a static game model and based on prospect theory, explores the reasons for food quality and safety issues in our food market from the perspectives of psychology and economics. Finally, it presents a more scientific food quality and safety mechanism and countermeasures.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Haq Nawaz ◽  
Iqra Naseem ◽  
Tanzila Rehman ◽  
Mubashir Nawaz

Aim: To optimize the Zinc oxide nanoparticles (ZnONPs)-catalyzed in vitro photolysis of bilirubin and to test their effect on bilirubin clearance in vivo. Materials & methods: ZnONPs, synthesized in an alkaline medium, were characterized. Response surface methodology was used to optimize the in vitro photolysis catalyzed by the nanoparticles (NPs). Blood samples from phenylhydrazine-induced hyperbilirubinemic rabbits which had been administered ZnONPs and UV light were analyzed to assess in vivo clearance of bilirubin. Results: The ZnONP-assisted UV treatment showed the linear and quadratic positive effects on the in vitro bilirubin photolysis with an optimal photolysis of bilirubin at 225 mg dl-1 concentration of ZnONPs and a UV exposure of 1.80 h. The ZnONP-assisted phototherapy of hyperbilirubinemic animals was also found to be more effective for in vivo clearance of bilirubin than phototherapy alone. Conclusion: After further trials, ZnONP-assisted phototherapy could be a potential treatment for hyperbilirubinemia in humans.


2008 ◽  
Vol 1 (4) ◽  
pp. 493-500
Author(s):  
D. Bhatnagar ◽  
G. Perrone ◽  
A. Visconti

In 2004, the European Commission approved the specific support action 'Integration of Mycotoxin and Toxigenic Fungi Research for Food Safety in the Global System' (MycoGlobe, contract FOOD-CT-2004-007174) within the Sixth Framework Programme, Food Quality and Safety. The aim of the MycoGlobe project (http://mycoglobe.ispa.cnr.it) was to implement the outcomes of a wide range of European research projects in the area of mycotoxins and toxigenic fungi by supporting, stimulating and facilitating cooperation between countries in the European Union and other countries that have bilateral scientific and technological cooperation agreement with the European Union (such as USA, Australia and South America). Through a series of conferences and interactions between scientists worldwide, MycoGlobe was a very successful project. The scientific significance of the MycoGlobe project consisted in the spread of knowledge of advanced research tools in genomics and sophisticated and rapid detection systems for mycotoxins and toxigenic fungi; and evaluation of research policy and procedures to achieve best practice for enhancement of food quality and safety by elimination of mycotoxins and toxigenic fungi from commodities. The socio-economic significance of the project was the setting up of a global collaborative network for research and technology transfer in the field of mycotoxins and toxigenic fungi, particularly for the benefit of the developing countries. A relevant outcome of the project was also the launching of the International Society for Mycotoxicology (http://www.mycotoxsociety. org) to promote research on mycotoxins and toxigenic fungi, thereby leading to prevention and reduction in exposure to mycotoxins, enhanced food safety and a greater public awareness of this area.


Author(s):  
Marleny García Lozano ◽  
Yadira Peña García ◽  
Jose Alberto Silva Gonzalez ◽  
Cynthia Vanessa Ochoa Bañuelos ◽  
Miriam Paulina Luevanos Escareño ◽  
...  

2011 ◽  
Vol 4 (4) ◽  
pp. 361-374 ◽  
Author(s):  
I. Tothill

Mycotoxin analysis and detection in food and drinks is vital for ensuring food quality and safety, eliminating and controlling the risk of consuming contaminated foods, and complying with the legislative limits set by food authorities worldwide. Most analysis of these toxins is still conducted using conventional methods; however, biosensor methods are currently being developed as screening tools for use in field analysis. Biosensors have demonstrated their ability to provide rapid, sensitive, robust and cost-effective quantitative methods for on-site testing. The development of biosensor devices for different mycotoxins has attracted much research interest in recent years with a range of devices being designed and reported in the scientific literature. However, with the advent of nanotechnology and its impact on the evolution of ultrasensitive devices, mycotoxin analysis is also benefiting from the advances taking place in applying nanomaterials in sensors development. This paper reviews the developments in the area of biosensors and their applications for mycotoxin analysis, as well as the development of micro/nanoarray transducers and nanoparticles and their use in the development of new rapid devices.


Sign in / Sign up

Export Citation Format

Share Document