Numerical Study of Fluid Flow Through a Confined Porous Square Cylinder

Author(s):  
Salah Guerbaai ◽  
Mouna Touiker ◽  
Kamel Meftah ◽  
Abdeslam Omara

Abstract A numerical study is performed to analyze steady state forced convection fluid flow through a confined porous square cylinder. The Darcy-Brinkman-Forchheimer model is adopted for the porous region. The finite volume method and the iterative SIMPLE algorithm are used to solve the governing equations. The results obtained are presented for the streamlines, variation of Nusselt number and drag coefficient for the range of conditions as 5 ≤ Re ≤ 40 and 10−2 ≤ Da ≤ 10−6.

2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.


10.30544/450 ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 71-86
Author(s):  
Kamel Korib ◽  
Mohamed ROUDANE ◽  
Yacine Khelili

In this paper, a numerical simulation has been performed to study the fluid flow and heat transfer around a rotating circular cylinder over low Reynolds numbers. Here, the Reynolds number is 200, and the values of rotation rates (α) are varied within the range of 0 < α < 6. Two-dimensional and unsteady mass continuity, momentum, and energy equations have been discretized using the finite volume method. SIMPLE algorithm has been applied for solving the pressure linked equations. The effect of rotation rates (α) on fluid flow and heat transfer were investigated numerically. Also, time-averaged (lift and drag coefficients and Nusselt number) results were obtained and compared with the literature data. A good agreement was obtained for both the local and averaged values.


2019 ◽  
Vol 23 (1) ◽  
pp. 150-161
Author(s):  
R. Bouchenafa ◽  
Hussein A. Mohammed ◽  
R. Saim

Abstract The aim of this paper is to numerically investigate the thermal and hydraulic performances of the two heat sinks made of wavy fins (WFHS). The governing equations fitted with boundary conditions were solved using the finite volume method, and the SIMPLE algorithm for the coupling velocity-pressure. The two-equation model k-ϵ was used to describe the turbulence phenomenon. The effects of wave numbers and the amplitude of wavy fins heat sink on the thermal and flow fields are studied and compared with the plate fin heat sink (PFHS). The results show that the use of wavy fins improves significantly the heat transfer rate, accompanied by a pressure drop penalty.


2014 ◽  
Vol 18 (4) ◽  
pp. 1305-1314 ◽  
Author(s):  
Mohammad Valipour ◽  
Reza Masoodi ◽  
Saman Rashidi ◽  
Masoud Bovand ◽  
Mojtaba Mirhosseini

In this paper, a numerical simulation has been performed to study the fluid flow and heat transfer around a square cylinder utilizing Al2O3-H2O nanofluid over low Reynolds numbers. Here, both Reynolds and Peclet numbers are varied within the range of 1 to 40and the volume fraction of nanoparticles (?) is varied within the range of 0<?<0.05. Two-dimensional and steady mass continuity, momentum and energy equations have been discretized using Finite Volume Method (FVM). SIMPLE algorithm has been applied for solving the pressure linked equations. The effect of volume fraction of nanoparticles on fluid flow and heat transfer were investigated numerically. It was found that at a given Reynolds number, the Nusselt number, drag coefficient, recirculation length, and pressure coefficient increases by increasing the volume fraction of nanoparticles.


In this work, bifurcation characteristics of unsteady, viscous, Newtonian laminar flow in two-dimensional sudden expansion and sudden contraction-expansion channels have been studied for different values of expansion ratio. The governing equations have been solved using finite volume method and FLUENT software has been employed to visualize the simulation results. Three different mesh studies have been performed to calculate critical Reynolds number (Recr) for different types of bifurcation phenomena. It is found that Recr decreases with the increase in expansion ratio (ER).


2021 ◽  
pp. 117047
Author(s):  
Shuang Song ◽  
Liangwan Rong ◽  
Kejun Dong ◽  
Yansong Shen

1970 ◽  
Vol 39 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sumon Saha ◽  
Noman Hasan ◽  
Chowdhury Md Feroz

A numerical study has been carried out for laminar natural convection heat transfer within a two-dimensional modified square enclosure having a triangular roof. The vertical sidewalls are differentially heated considering a constant flux heat source strip is flush mounted with the left wall. The opposite wall is considered isothermal having a temperature of the surrounding fluid. The rest of the walls are adiabatic. Air is considered as the fluid inside the enclosure. The solution has been carried out on the basis of finite element analysis by a non-linear parametric solver to examine the heat transfer and fluid flow characteristics. Different heights of the triangular roof have been considered for the present analysis. Fluid flow fields and isotherm patterns and the average Nusselt number are presented for the Rayleigh numbers ranging from 103 to 106 in order to show the effects of these governing parameters. The average Nusselt number computed for the case of isoflux heating is also compared with the case of isothermal heating as available in the literature. The outcome of the present investigation shows that the convective phenomenon is greatly influenced by the inclined roof height. Keywords: Natural convection, triangular roof, Rayleigh number, isoflux heating. Doi:10.3329/jme.v39i1.1826 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 1-7


Author(s):  
M. Yasep Setiawan ◽  
Wawan Purwanto ◽  
Wanda Afnison ◽  
Nuzul Hidayat

This study discusses the numerical study of two-dimensional analysis of flow through circular cylinders. The original physical information entered in the equation governing most of the modeling is transferred into a numerical solution. Fluid flow on two-dimensional circular cylinder wall using high Reynolds k-ε modeling (Re = 106), Here we will do 3 modeling first oder upwind, second order upwind and third order MUSCL by using k-ε standard.  The general procedure for this research is formulated in detail for allocations in the dynamic analysis of fluid computing. The results of this study suggest that MUSCL's third order modeling gives more accurate results better than other models.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Gamal M. Abdel-Rahman Rashed

Chemical entropy generation and magnetohydrodynamic effects on the unsteady heat and fluid flow through a porous medium have been numerically investigated. The entropy generation due to the use of a magnetic field and porous medium effects on heat transfer, fluid friction, and mass transfer have been analyzed numerically. Using a similarity transformation, the governing equations of continuity, momentum, and energy and concentration equations, of nonlinear system, were reduced to a set of ordinary differential equations and solved numerically. The effects of unsteadiness parameter, magnetic field parameter, porosity parameter, heat generation/absorption parameter, Lewis number, chemical reaction parameter, and Brinkman number parameter on the velocity, the temperature, the concentration, and the entropy generation rates profiles were investigated and the results were presented graphically.


Author(s):  
Abbas Hazbavi ◽  
Sajad Sharhani

In this study, the hydrodynamic characteristics are investigated for magneto-micropolar fluid flow through an inclined channel of parallel plates with constant pressure gradient. The lower plate is maintained at constant temperature and upper plate at a constant heat flux. The governing equations which are continuity, momentum and energy are are solved numerically by Explicit Runge-Kutta. The effect of characteristic parameters is discussed on velocity and microrotation in different diagrams. The nonlinear parameter affected the velocity microrotation diagrams. An increase in the value of Hartmann number slows down the movement of the fluid in the channel. The application of the magnetic field induces resistive force acting in the opposite direction of the flow, thus causing its deceleration. Also the effect of pressure gradient is investigated on velocity and microrotation in different diagrams.


Sign in / Sign up

Export Citation Format

Share Document