scholarly journals Analysis of Slope Stability

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Slávka Harabinová ◽  
Kamila Kotrasová ◽  
Eva Kormaníková ◽  
Iveta Hegedüsová

Abstract In the paper the numerical modelling of ensuring slope stability and their analysing with using of different numerical methods are presented. We have designed the cutting walls with earth nails and anchors securing for modelling of slope stability ensuring. The calculate and the mechanism of failure process of the reinforced slopes were studied using the different methods for slope stability. The nailing significantly increased the stability level for using Spencer method. The anchors increased the stability level for using Spencer method. Increasing the nail or anchors length improved the stability of the reinforced slopes. The reinforced slope exhibited a significant the stability level.


2017 ◽  
Vol 873 ◽  
pp. 248-253
Author(s):  
Shi Wei Hou ◽  
Shi He Ma ◽  
Xu Li Liu ◽  
Ying Liu

The slopes reinforced by anti-slide piles were simulated in this paper. The setting position, pile spacing and anchorage depth of integrated piles were discussed with strength reduction method. The results show that the pile position should depart slope into two stages, and the further strain would be limited. When the spacing of the anti-slide piles is 2-3 times of pile diameter, it has a soil arching effect to wedge the soil. The anchorage depth can affect the form of the potential sliding surface. Three kinds of defective piles were studied to research deformation of slope reinforced by defective piles. The defective piles were namely expanded pile, necking pile and segregationpile. The equivalent plastic strain zone was used to judge the slope failure, and then the stability and deformation process of the three-dimensional slope were simulated. By comparing the plastic strain, safety coefficient curve and pile-soil stress curve, between the defective pile and integrated pile, the progressive failure process of the reinforced slope was analyzed, including the formation process of the macroscopic shear zone.



2020 ◽  
Author(s):  
Brett Carr ◽  
Einat Lev ◽  
Loÿc Vanderkluysen ◽  
Danielle Moyer ◽  
Gayatri Marliyani ◽  
...  


KURVATEK ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 21-34
Author(s):  
Untung Wahyudi ◽  
Excelsior T P ◽  
Luthfi Wahyudi

PT. Putera Bara Mitra used open mining system for mining operation, Yet the completion of study on the end wall slope stability that  undertaken by geotechnical PT. Putera Bara Mitra in Northwest Pit and the occured a failure in the low wall on the 1st June 2012 led to the need for analysis and design the overall slope at the mine site. To analyze and design the overall slope, used value of the recommended minimum safety. The value was based on company for single slope SF ≥ 1.2 and SF ≥ 1.3 for overall slope. The calculation used Bichop method with the help of software slide v 5.0. Geometry improvements was done at the low slopes that originally single wall with a 30 m bench height and a slope 70° with SF = 0.781, into 4 levels with SF = 1.305. The analysis explained the factors that affect the stability of the low wall included the mining slope geometry, unfavorable drainase system, material stockpiles and seismicity factors. It was necessary to do prevention efforts to maintain the stability of the slope included the redesign to slope geometry, handling surface and subsurface water in a way to control slopes draining groundwater, vegetation stabilization using and monitoring slope using Total Station with Prism and Crackmeter to determine the movement of cracks visible on the surface. 



2012 ◽  
Vol 204-208 ◽  
pp. 241-245
Author(s):  
Yang Jin

The stability of soil slope under seepage is calculated and analyzed by using finite element method based on the technique of shear strength reduction. When the condition of seepage or not is considered respectively, the critical failure state of slopes and corresponding safety coefficients can be determined by the numerical analysis and calculation. Besides, through analyzing and comparing the calculation results, it shows that seepage has a negative impact on slope stability.



2012 ◽  
Vol 170-173 ◽  
pp. 847-852
Author(s):  
Peng Ming Jiang ◽  
Zhong Lei Yan ◽  
Peng Li

As the complexity of unsaturated soil theory, and it must have a long test period when we study the unsaturated soils, so the conventional design analysis software does not provide such analysis, so we can imagine that such a slope stability analysis does not accurately reflect the actual state of the slope. Based on the known soil moisture content,this paper use the soil water characteristic curve and strength theory of unsaturated soil to calculate the strength reduction parameters of soil which can calculate the stability of the soil slope when using the common calculation method. It is noticeable that this method can be extended and applied if we establish regional databases for this simple method, and these databases can improve the accuracy of the calculation of slope stability.



Author(s):  
Farshad BahooToroody ◽  
Saeed Khalaj ◽  
Leonardo Leoni ◽  
Filippo De Carlo ◽  
Gianpaolo Di Bona ◽  
...  

Geosynthetics are extensively utilized to improve the stability of geotechnical structures and slopes in urban areas. Among all existing geosynthetics, geotextiles are widely used to reinforce unstable slopes due to their capabilities in facilitating reinforcement and drainage. To reduce settlement and increase the bearing capacity and slope stability, the classical use of geotextiles in embankments has been suggested. However, several catastrophic events have been reported, including failures in slopes in the absence of geotextiles. Many researchers have studied the stability of geotextile-reinforced slopes (GRSs) by employing different methods (analytical models, numerical simulation, etc.). The presence of source-to-source uncertainty in the gathered data increases the complexity of evaluating the failure risk in GRSs since the uncertainty varies among them. Consequently, developing a sound methodology is necessary to alleviate the risk complexity. Our study sought to develop an advanced risk-based maintenance (RBM) methodology for prioritizing maintenance operations by addressing fluctuations that accompany event data. For this purpose, a hierarchical Bayesian approach (HBA) was applied to estimate the failure probabilities of GRSs. Using Markov chain Monte Carlo simulations of likelihood function and prior distribution, the HBA can incorporate the aforementioned uncertainties. The proposed method can be exploited by urban designers, asset managers, and policymakers to predict the mean time to failures, thus directly avoiding unnecessary maintenance and safety consequences. To demonstrate the application of the proposed methodology, the performance of nine reinforced slopes was considered. The results indicate that the average failure probability of the system in an hour is 2.8×10−5 during its lifespan, which shows that the proposed evaluation method is more realistic than the traditional methods.



1983 ◽  
Vol 20 (4) ◽  
pp. 661-672 ◽  
Author(s):  
R. K. H. Ching ◽  
D. G. Fredlund

Several commonly encountered problems associated with the limit equilibrium methods of slices are discussed. These problems are primarily related to the assumptions used to render the inherently indeterminate analysis determinate. When these problems occur in the stability computations, unreasonable solutions are often obtained. It appears that problems occur mainly in situations where the assumption to render the analysis determinate seriously departs from realistic soil conditions. These problems should not, in general, discourage the use of the method of slices. Example problems are presented to illustrate these difficulties and suggestions are proposed to resolve these problems. Keywords: slope stability, limit equilibrium, method of slices, factor of safety, side force function.



2020 ◽  
Vol 4 (3) ◽  
pp. 196
Author(s):  
Dhrubo Haque ◽  
Md Isteak Reza

This paper has aimed to investigate the slope stability for various conditions like embankment geometry, water level and soil property. The analysis has been performed by using the XSTABL program for different slope heights, slope angles and flood conditions with a fixed soil cohesion value. Since the rapid drawdown is the worst case for a particular embankment therefore, the analysis has been further performed with different cohesion values. From this investigation it has been noticed that the increase of cohesion of soil can increase the stability to a great extent. All the analysises have been performed for twenty bore logs. It has been found that the underlying soil affects the stability of slope as the failure surface intersects the soil of this region. It has been also observed that the loose, liquefiable sandy soil decreases the stability while the stiff soil with sufficient cohesion value stabilizes the slope of embankment.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited. 



Sign in / Sign up

Export Citation Format

Share Document