scholarly journals Evaluation of antibacterial and antifungal properties of selected mouthwashes: in vitro studies

Author(s):  
Ewa Olejnik ◽  
Anna Biernasiuk ◽  
Anna Malm ◽  
Jolanta Szymanska

Abstract Introduction. Mouthwashes should include antimicrobial compounds to inhibit microorganism multiplication, thus the formation and development of dental plaque. Aim. The aim of the study was to evaluate the antibacterial and antifungal effectiveness of mouthwashes depending on their active ingredients. Material and methods. In the study, the effect of antibacterial and antifungal properties of mouthwashes on reference bacterial and yeast-like fungi strains was examined. The first type of the assessed mouthwashes contained only sodium fluoride or sodium fluoride and amine fluoride as active ingredients, while the second type contained sodium fluoride and cetylpyridinium chloride. In the study, a well diffusion method was used to test microorganisms constituting natural or pathogenic microflora of oral mucosa. The used reference microorganisms came from the ATCC: L. acidophilus ATCC 4356, Lactobacillus rhamnosus ATCC 53103, S. mutans ATCC 25175, and Candida yeasts: C. albicans ATCC 2091, C. albicans ATCC 10231, Candida parapsilosis ATCC 22019, Candida glabrata ATCC 90030, Candida krusei ATCC 14243. Results. The mouthwashes containing sodium fluoride and cetylpyridinium chloride showed an inhibitory effect against a greater number of reference strains used in the study than did mouthwashes that contained only sodium fluoride (or sodium fluoride and amine fluoride) as active ingredients. Against the four reference strains of Candida genus, the mouthwashes with an inorganic and organic fluoride compound showed no or minimum inhibitory effect or were much less effective than the mouthwashes that also contained cetylpyridinium chloride. Conclusion. Mouthwashes containing multiple ingredients with different antimicrobial mechanisms show synergistic action against the bacterial and fungal microflora responsible for the accumulation of dental plague.

2014 ◽  
Vol 50 (4) ◽  
pp. 851-858 ◽  
Author(s):  
Isabela Moreira Baumgratz de Paula ◽  
Flávia Costa Moraes ◽  
Orlando Vieira de Souza ◽  
Célia Hitomi Yamamoto

Rosmarinus officinalis, which belongs to the Lamiaceaefamily, is a species of medicinal flora with therapeutic properties. In order to exploit the benefits of these properties, a mouthwash formulation was developed, with careful selection of raw materials to meet pharmacotechnical requirements. Extracts of the plant were incorporated into a mouthwash, which was shown to have inhibitory action in vitro against the micro-organisms commonly found in periodontics. Controls for assessing the quality of the drugs were carried out, quantifying phenols and flavonoids as chemical markers. Mouthwash solutions were formulated containing 0.1, 5 and 10% ethanol extract of R. officinalis; and 0.05, 5 and 10% of the hexane fraction of R. officinalis. In order to evaluate synergism, ethanol extract and hexane fraction were also added to formulations containing 0.05% sodium fluoride and 0.12% chlorhexidine digluconate. These formulations were assessed for inhibitory effect against the specific microorganisms involved in the process of bacterial plaque formation, S. mutans(ATCC25175) and C. albicans(ATCC 10231), frequently found in cases of oral infections. The agar diffusion method was used to evaluate the inhibitory activity of extracts and formulations. All mouthwash solutions displayed inhibitory activity having higher sensitivity to S. mutansfor the 5% ethanol extract+0.05% sodium fluoride, and greater sensitivity to C. albicansfor the 10% hexane fraction. Results were characterized by the appearance of a growth inhibition halo, justifying the utilization and association of extracts of R. officinalis.


2020 ◽  
Vol 11 ◽  
pp. 37-43
Author(s):  
Prof. Teodora P. Popova ◽  
Toshka Petrova ◽  
Ignat Ignatov ◽  
Stoil Karadzhov

The antimicrobial action of the dietary supplement Oxidal® was tested using the classic Bauer and Kirby agar-gel diffusion method. Clinical and reference strains of Staphylococcus aureus and Escherichia coli were used in the studies. The tested dietary supplement showed a well-pronounced inhibitory effect against the microbial strains commensurable with that of the broad-spectrum chemotherapeutic agent Enrofloxacin and showed even higher activity than the broad spectrum antibiotic Thiamphenicol. The proven inhibitory effect of the tested dietary supplement against the examined pathogenic bacteria is in accordance with the established clinical effectiveness standards for antimicrobial agents.


2020 ◽  
Vol 16 ◽  
Author(s):  
Adinath D. Badar ◽  
Shubham M. Sulakhe ◽  
Mahesh B. Muluk ◽  
Naziya N. M. A. Rehman ◽  
Prashant P. Dixit ◽  
...  

Background: Thiosemicarbazone, 1,2,3-triazole and their derivatives received great pharmaceutical importance due to their prominent biological activities. In the present study, the molecular hybrid thiosemicarbazone-1,2,3-triazoles derivatives were synthesized and screened for their antimicrobial activities. Methods: A series of thiosemicarbazone clubbed with 1,2,3-triazole derivatives were synthesized via click chemistry approach in good yields. The structures of synthesized compounds were assigned by their spectral data. The in vitro antimicrobial activity was performed by the agar well diffusion method. A molecular docking study was performed to identify the possible mode of action of synthesized derivatives. Results: The compounds 5d, 5h, 5i and 5k have exhibited excellent antimicrobial activities against both antibacterial and antifungal pathogens. The active thiosemicarbazone-1,2,3-triazole derivatives have shown excellent binding affinity towards DNA gyrase. Conclusion: The molecular hybrid thiosemicarbazone-1,2,3-triazole derivatives were synthesized. The newly synthesized compounds were evaluated for their antimicrobial activities. Few of the thiosemicarbazone-1,2,3-triazoles derivatives have exhibited good antimicrobial activities. They have been shown excellent binding affinity towards DNA gyrase.


2016 ◽  
Vol 11 (2) ◽  
pp. 248 ◽  
Author(s):  
Kathirvel Poonkodi ◽  
Subban Ravi

<p class="Abstract">The present study was aimed to evaluate the phytochemical screening and antimicrobial activity of the petroleum ether and methanol extracts from the mature leaves of <em>Richardia scabra</em> from India. Disc diffusion method was used to determine the zone inhibition of the tested samples for antibacterial and agar plug method was used to determine the antifungal activity, while the microtube-dilution technique was used to determine the minimum inhibitory concentration. Both extracts showed significant antibacterial and antifungal activities when tested against 10 bacterial and four fungal strains. The minimum inhibitory concentrations of the methanol extract of<em> R. scabra</em> ranged between 12.5–100 μg/mL for bacterial strains. Alkaloids, steroids, flavonoids, fatty acids, terpenoids and simple sugar were detected as phytoconstituents of extracts. To the best of our knowledge, this is the first report against antimicrobial activity of common weed species <em>R. scabra</em> found in India.</p><p> </p>


2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Bernard Oluwapelumi Oluboyo ◽  
Maihankali J Charles ◽  
Richard Akele ◽  
Funmilayo Akinseye ◽  
Adeola Oluboyo

Objetive: Manufacturers of toothpastes claim that their products are active against oral microbiome capable of causing tooth decay. The objective of this study was to investigate the manufacturers’ claim using some of the toothpaste products sold in Ado-Ekiti, Nigeria. Material and methods: The antibacterial potentials of five commercialized toothpaste products (designated sodium fluoride-zinc sulphate, benzyl alcohol-sodium fluorophosphate, sodium fluoride-eugenol, sodium fluoridesodium laurylsulfate and sodium fluoridepotassium nitrate) were tested against six oral isolates of dental caries and periodontal origin – Staphylococcus aureus, Streptococcus mitis, Streptococcus salivarius, Streptococcus pyogenes and Pseudomonas aeruginosa. The antimicrobial potentials were evaluated using modified agar well diffusion method. Various dilutions of the toothpaste products from 1:1 to 1:16 were tested against each test microorganism. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the toothpastes were determined. Results: sodium fluoride-zinc sulphate, benzyl alcoholsodium fluorophosphate and sodium fluorideeugenol toothpastes showed inhibitory effects on S. aureus, S. mitis and S. salivarius. Sodium fluoride-sodium laurylsulfate and sodium fluoride-potassium nitrate toothpastes showed no inhibitory effect on the organisms except S. pyogenes. Only sodium fluoride-potassium nitrate toothpaste inhibited E. coli while none of the toothpastes inhibited P. aeruginosa. The MIC and MBC of sodium fluoride-zinc sulphate, benzyl alcohol-sodium fluorophosphate, and sodium fluoride-eugenol toothpastes showed bacteriostatic and bactericidal effects on the organisms. Sodium fluoride-zinc sulphate, benzyl alcohol-sodium fluorophosphate, and sodium fluoride-eugenol toothpastes showed comparable effects on S. aureus, S. mitis and S. salivarius. Sodium fluoride-eugenol toothpaste was strongest against S. mitis, benzyl alcoholsodium fluorophosphates toothpaste was strongest against S. pyogenes, sodium fluoridezinc sulphate toothpaste was strongest against S. salivarius and only sodium fluoride-potassium nitrate toothpaste inhibited E. coli. Conclusion: The manufacturer’s claim is upheld by this study for sodium fluoride-zinc sulphate, benzyl alcohol-sodium fluorophosphate and sodium fluoride-eugenol toothpastes. However, sodium fluoride-sodium laurylsulfate and sodium fluoride-potassium nitrate toothpastes showed limited inhibitory potentials.     Keywords Antibacterial; Caries; Oral isolates; Periodontitis; Toothpastes.


Author(s):  
Daniel Chavarría-Bolaños ◽  
Vicente Esparza-Villalpando ◽  
Karol Ramírez

Chlorhexidine was introduced almost seven decades ago and has a myriad of applications in dentistry. Few studies have evaluated the antimicrobial and antifungal capacity of different concentrations of chlorhexidine mouthwashes. Therefore, the aim of this study, was to evaluate in vitro, the antibacterial and antifungal capacity of three commercially available mouthwashes in Costa Rica, with different concentrations of chlorhexidine, 0.12%, 0.06%, and 0.03%. The experimental method selected was the Kirby-Bauer method to evaluate the antibacterial and antifungal effect of each compound by measuring the inhibitory effect on Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Candida albicans strains, exposed to the antiseptic solutions. All samples showed some degree of antibacterial and antifungal effect. Even though we provide in vitro results, our findings are of relevance since all the species used in our experiment are microorganisms that may be present in dental plaque. Our results further support evidence that oral hygiene regimens may include mouthwashes with low doses of chlorhexidine and maintain reasonable antibacterial and antifungal efficacy.


2020 ◽  
pp. 1-14
Author(s):  
Daniel Erdwey ◽  
Hendrik Meyer-Lueckel ◽  
Marcella Esteves-Oliveira ◽  
Christian Apel ◽  
Richard Johannes Wierichs

<b><i>Objectives:</i></b> The aim of this in vitro study was to compare the demineralization inhibitory effect of gels/solutions used in combination with either standard or highly fluoridated dentifrices on sound dentin as well as on artificial dentin caries-like lesions. <b><i>Methods:</i></b> Bovine dentin specimens (<i>n</i> = 240) with two different surfaces each (sound [ST] and artificial caries lesion [DT]) were prepared and randomly allocated to twelve groups. Weekly interventions during pH-cycling (28 days, 6 × 120 min demineralization/day) were: the application of gels/solutions containing amine fluoride/sodium fluoride (12,500 ppm F [ppm]; pH = 4.4; AmF); NaF (12,500 ppm; pH = 6.6; NaF1); NaF (12,500 ppm; pH = 6.3; NaF2); silver diamine fluoride (14,200 ppm; pH = 8.7; SDF); acidulated phosphate fluoride (12,500 ppm; pH = 3.8; APF), and no intervention (standard control; S). Furthermore, half of the specimens in each group were brushed (10 s; twice per day) with dentifrice slurries containing either 1,450 ppm (e.g., AmF<sub>1450</sub>) or 5,000 ppm (e.g., AmF<sub>5000</sub>). Differences in integrated mineral loss (ΔΔZ) and lesion depth (ΔLD) were calculated between values before and after pH-cycling using transversal microradiography. <b><i>Results:</i></b> After pH-cycling Ss showed significantly increased ΔZ<sub>DT</sub> and LD<sub>DT</sub> values, indicating further demineralization. In contrast, except for one, all groups including fluoride gels/solutions showed significantly decreased ΔZ<sub>DT</sub> values. Additional use of most fluoride gels/solutions significantly enhanced mineral gain, mainly in the surface area; however, acidic gels/solutions seemed to have negative effects on lesion depths. <b><i>Significance:</i></b> Under the present pH-cycling conditions the highly fluoridated dentifrice significantly reduced caries progression and additional application of nearly all of the fluoride gels/solutions resulted in remineralization. However, there was no difference in the remineralizing capacity of fluoride gels/solutions when used in combination with either standard or highly fluoridated dentifrices.


2016 ◽  
Vol 8 (2) ◽  
pp. 209-216
Author(s):  
A. Rahim ◽  
R. Ali ◽  
A. Islam

 2',4',5'- and 2',3',4'-trimethoxy flavanones have been synthesized starting with 2-hydroxyacetophone and substituted aldehyde. Antibacterial activities of the flavanones have been tested along with their corresponding chalcones against two human pathogenic bacteria (Streptococcus-b-haemolyticus and  Klebsiella sp. (G-)). Antifungal activities of the flavanones have also been investigated against  two plants pathogenic mold fungi (Rhizactonia solani Sclerotium rolfsii). The structures of the synthesized compounds have been characterized with the help of  UV, IR and 1H NMR and 13C-NMR spectra. The antibacterial and antifungal screening were performed in vitro by the filter paper disc diffusion method and poisoned food technique. The flavanones showed antibacterial activity while no activity was observed to their corresponding chalcones against the tested bacteria. On the other hand, chalcones and their corresponding flavanones both showed fungicidal activities.


2020 ◽  
Vol 12 (1) ◽  
pp. 90-99
Author(s):  
Matthew O. ADEBOLA ◽  
Tunde S. BELLO ◽  
Esther A. SERIKI ◽  
Mariam B. AREMU

Irish potato (Solanum tuberosum) is an important worldwide food crop and one of the most popular in Nigeria. Its abundance and successful yield have been immensely affected by black scurf disease caused by Rhizoctonia solani. Harnessing a cost-effective management of this pathogenic fungus, three botanical species Acalypha wilkesiana, Moringa oleifera and Carica papaya leaves, each at concentrations of 0 mg ml-1 (control), 25 mg ml-1, 50 mg ml-1 and 75 mg ml-1 were evaluated in vitro. The plant leaf extracts were prepared using methanol and were evaluated for their toxicity using agar well diffusion method. The fungus was isolated from spoilt Irish potato with black scurf symptoms. The results showed the presence of some phytochemicals in leaf extract of each of the plants tested. The three leaves extract independently inhibited mycelial growth of R. solani. The potency of all the plant extracts increased with the increase in concentration. The highest concentration (75 mg ml-1) of M. oleifera and C. papaya evaluated, gave the highest inhibitory effect of 0.81 mm and 1.63 mm respectively, which were not significantly different (p> 0.05), but was obviously different from A. wilkesiana (2.81 mm). Furthermore, M. oleifera extract gave the highest percentage of mycelial growth inhibition of the fungus in all grades of the concentrations evaluated, whereas A. wilkesiana showed the least. The leaves of the three species are therefore recommended for in vivo control of this fungus, owing to their proven efficacy and to their cheap availability.


2019 ◽  
Vol 65 (3) ◽  
pp. 32-38
Author(s):  
Gurkan Demirkol ◽  
Omer Erturk

Summary Introduction: Chemical industry is obligatory to improve new chemically effective components. Spices are potential new antimicrobials. Objective: The present study was designed to evaluate the antibacterial and antifungal activity of fifty aromatic spices and medicinal herbs obtained from Turkey. Material and methods: In vitro antibacterial activities of a total of fifty acetone extracts from aromatic spices and medicinal herbs were studied by disc diffusion and agar diffusion method. The extracts were tested against three Gram-positive bacteria (Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus), four Gram-negative bacteria (Proteus vulgaris, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium) and two fungi (Aspergillus niger, Candida albicans). Results: The highest antimicrobial activity was observed in the extract of Alpinia officinarum against Salmonella typhimurium and Cassia angustifolia against Bacillus cereus. Many of the extracts showed minimum inhibition concentration at even lowest dose. Conclusion: The obtained results showed that aromatic spices and medicinal herbs may be used as natural antimicrobials against diseases.


Sign in / Sign up

Export Citation Format

Share Document