Improving The Courses Content By Using Modelling And Simulation In Cutting Metals

2014 ◽  
Vol 1 (1) ◽  
pp. 107-110
Author(s):  
Marinela Inţă ◽  
Achim Muntean ◽  
Cristian Petrianu

AbstractThe paper intends to implement the use of theoretical models and computer aided simulation based on FEM for improving the teaching of cutting metals theory for the students of Machine Manufacturing Technologies and Machine Tools. The advantage of simulation, especially animated is to transpose the normal classroom into a virtual model where the skills can be evaluated under similar realistic conditions. It helps the students to be able to face the complexity of the real complex processes inside the production environment. A review of the most important models in cutting processes shows that the majority of the researches in this field tend to replace the traditional methods of calculating the cutting data parameters based on mathematical models with new complex models. The paper tries to relieve the importance of using the FEM models and simulation software for a better understanding of the process and also for providing more accurate and more detailed information. In the case studied in this paper a series of experimental models were performed for a validation of the theoretical models created by comparing the results. The advantages of using 2D and 3D animated models in the teaching and training process are also mentioned in the paper.

2021 ◽  
Vol 7 (6) ◽  
pp. eaba2458
Author(s):  
Weier Bao ◽  
Falin Tian ◽  
Chengliang Lyu ◽  
Bin Liu ◽  
Bin Li ◽  
...  

The poor understanding of the complex multistep process taken by nanocarriers during the delivery process limits the delivery efficiencies and further hinders the translation of these systems into medicine. Here, we describe a series of six self-assembled nanocarrier types with systematically altered physical properties including size, shape, and rigidity, as well as both in vitro and in vivo analyses of their performance in blood circulation, tumor penetration, cancer cell uptake, and anticancer efficacy. We also developed both data and simulation-based models for understanding the influence of physical properties, both individually and considered together, on each delivery step and overall delivery process. Thus, beyond finding that nanocarriers that are simultaneously endowed with tubular shape, short length, and low rigidity outperformed the other types, we now have a suit of theoretical models that can predict how nanocarrier properties will individually and collectively perform in the multistep delivery of anticancer therapies.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 575
Author(s):  
Jelena Ochs ◽  
Ferdinand Biermann ◽  
Tobias Piotrowski ◽  
Frederik Erkens ◽  
Bastian Nießing ◽  
...  

Laboratory automation is a key driver in biotechnology and an enabler for powerful new technologies and applications. In particular, in the field of personalized therapies, automation in research and production is a prerequisite for achieving cost efficiency and broad availability of tailored treatments. For this reason, we present the StemCellDiscovery, a fully automated robotic laboratory for the cultivation of human mesenchymal stem cells (hMSCs) in small scale and in parallel. While the system can handle different kinds of adherent cells, here, we focus on the cultivation of adipose-derived hMSCs. The StemCellDiscovery provides an in-line visual quality control for automated confluence estimation, which is realized by combining high-speed microscopy with deep learning-based image processing. We demonstrate the feasibility of the algorithm to detect hMSCs in culture at different densities and calculate confluences based on the resulting image. Furthermore, we show that the StemCellDiscovery is capable of expanding adipose-derived hMSCs in a fully automated manner using the confluence estimation algorithm. In order to estimate the system capacity under high-throughput conditions, we modeled the production environment in a simulation software. The simulations of the production process indicate that the robotic laboratory is capable of handling more than 95 cell culture plates per day.


Author(s):  
Greg Quinn

There are many theoretical models that attempt to accurately and consistently link kinematic and kinetic information to musculoskeletal pain and deformity of the foot. Biomechanical theory of the foot lacks a consensual model: clinicians are enticed to draw from numerous paradigms, each having different levels of supportive evidence and contrasting methods of evaluation, in order to engage in clinical deduction and treatment planning. Contriving to find a link between form and function lies at the heart of most of these competing theories and the physical nature of the discipline has prompted an engineering approach. Physics is of great importance in biology and helps us to model the forces that the foot has to deal with in order for it to work effectively. However, the tissues of the body have complex processes that are in place to protect them and they are variable between individuals. Research is uncovering why these differences exist and how these processes are governed. The emerging explanations for adaptability of foot structure and musculoskeletal homeostasis offer new insights on how clinical variation in outcomes and treatment effects might arise. These biological processes underlie how variation in the performance and utilisation of common traits, even within apparently similar sub-groups, make anatomical distinction less meaningful and are likely to undermine the justification of a 'foot type'. Furthermore, mechanobiology introduces a probabilistic element to morphology based on genetic and epigenetic factors.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Wenqian Zhang ◽  
Shuhai Fan ◽  
Jiawei Xiong ◽  
Siyu Chen

Aiming at production environment and operation design in manual materials handling which often overlook workers’ physiological factors and cause fatigue, even work-related musculoskeletal disorders, we construct a biobjective model based on economics and ergonomics. In the model, two objectives include functions about handling time and energy consumption. Based on the openness of IGRIP/ERGO simulation software combined with MATLAB, we design and develop the interactive simulation platform, where program language can be automatically generated. Then, we analyze the case about handling operations in an automobile brake pad manufacturing company, and the number of input materials and process scheduling are taken as research objects. Finally, the results show that the win-win optimal solution can be usually obtained between productivity and ergonomics for decision makers according to the proposed biobjective model. Moreover, the case study demonstrates that the interactive simulation platform can be devoted to providing the solution for modern production operation directly and conveniently, which can make the production environment and operation design in accordance with ergonomics.


2000 ◽  
Author(s):  
Baojiu Lin ◽  
Won Gil Ryim

Abstract Improvements in part quality and cost reduction are the primary objectives of CAE use in the injection molding industry. Engineers use advanced injection molding simulation software to analyze and verify their part designs. Traditionally, engineers have had to rerun simulations to verify the effects of changes in gate locations. For complex models, simulations are very time consuming. To reduce the design cycle time, a Design Optimization Module is developed by C-MOLD. One of the functions of this new software module is to automatically select optimal gate locations. This innovative technology is the result of close R&D collaboration between C-MOLD and LG-PRC in Korea. An overview of gate location optimization technology is presented in this paper, and several examples are also presented as illustration.


2019 ◽  
Vol 487 (4) ◽  
pp. 5372-5387
Author(s):  
Dylan L Kloster ◽  
M Flock

ABSTRACT Over the last few years instruments such as VLT/SPHERE and Subaru/HiCIAO have been able to take detailed scattered light images of protoplanetary discs. Many of the features observed in these discs are generally suspected to be caused by an embedded planet, and understanding the cause of these features requires detailed theoretical models. In this work we investigate disc–planet interactions using the pluto code to run 2D and 3D hydrodynamic simulations of protoplanetary discs with embedded 30 and 300 M⊕ planets on both an inclined (i = 2.86°) and non-inclined orbit, using an α-viscosity of 4 × 10−3. We produce synthetic scattered light images of these discs at H-band wavelengths using the radiative transfer code radmc3d. We find that while the surface density evolution in 2D and 3D simulations of inclined and non-inclined planets remain fairly similar, their observational appearance is remarkably different. Most of the features seen in the synthetic H-band images are connected to density variations of the disc at around 3.3 scale heights above and below the mid-plane, which emphasizes the need for 3D simulations. Planets on sustained orbital inclinations disrupt the disc’s upper atmosphere and produce radically different observable features and intensity profiles, including shadowing effects and intensity variation of the order of 10–20 times the surrounding background. The vertical optical depth to the disc mid-plane for H-band wavelengths is τ ≈ 20 in the disc gap created by the high-mass planet. We conclude that direct imaging of planets embedded in the disc remains difficult to observe, even for massive planets in the gap.


2012 ◽  
Vol 490-495 ◽  
pp. 2136-2140
Author(s):  
Tong Gang Zhao ◽  
Zhi Qiang Zhang

As development of laser technology, the characteristic of laser atmospheric propagation is always hot spot in laser domain. Using theoretical models of laser atmospheric propagation, a simulation system is researched by implementing a scientific method of software development. This simulation system can simulate the radiate property of laser propagation in atmosphere, and demonstrate the course of laser propagation. This theoretical model of atmospheric propagation is based on Lambert-Beer law, combined with other classic theoretical model such as Rayleigh scattering and Mie scattering. Multiple scattering theories are used when simulating the laser propagation in smoke or fog. In calculation, the atmosphere is divided into layer. An appropriate model will be selected for calculation in each layer in order to enhance the stimulation precision. Lastly, the figure of light spot is drawn along with transmission space. Laser atmospheric propagation is demonstrated.


Author(s):  
Philippe Lafon ◽  
Romain Lacombe ◽  
Fabien Crouzet ◽  
Frédéric Daude ◽  
Samir Ziada ◽  
...  

A pure tone phenomenon has been observed at 460 Hz on a piping steam line of a power plant. The source has been identified to be generated in a gate valve and to be of cavity noise type. This paper presents the investigations carried out on experimental models in order to analyze the problem. 2D and 3D axisymmetric models are used and lock-in situations between shear layer modes and acoustic duct modes are proven to give rise to powerful tones. Some counter measures are also tested with the objective of lowering the amplitude of pressure oscillations.


2018 ◽  
Vol 124 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Alba Azola ◽  
Jeffrey Palmer ◽  
Rachel Mulheren ◽  
Riccardo Hofer ◽  
Florian Fischmeister ◽  
...  

The fluid mechanics of whistling involve the instability of an air jet, resultant vortex rings, and the interaction of these rings with rigid boundaries (see http://www.canal-u.tv/video/cerimes/etude_radiocinematographique_d_un_siffleur_turc_de_kuskoy.13056 and Meyer J. Whistled Languages. Berlin, Germany: Springer, 2015, p. 74–774). Experimental models support the hypothesis that the sound in human whistling is generated by a Helmholtz resonator, suggesting that the oral cavity acts as a resonant chamber bounded by two orifices, posteriorly by raising the tongue to the hard palate, and anteriorly by pursed lips (Henrywood RH, Agarwal A. Phys Fluids 25: 107101, 2013). However, the detailed anatomical changes in the vocal tract and their relation to the frequencies generated have not been described in the literature. In this study, videofluoroscopic and simultaneous audio recordings were made of subjects whistling with the bilabial (i.e., “puckered lip”) technique. One whistling subject was also recorded, using magnetic resonance imaging. As predicted by theory, the frequency of sound generated decreased as the size of the resonant cavity increased; this relationship was preserved throughout various whistling tasks and was consistent across subjects. Changes in the size of the resonant cavity were primarily modulated by tongue position rather than jaw opening and closing. Additionally, when high-frequency notes were produced, lateral chambers formed in the buccal space. These results provide the first dynamic anatomical evidence concerning the acoustic production of human whistling. NEW & NOTEWORTHY We establish a new and much firmer quantitative and physiological footing to current theoretical models on human whistling. We also document a novel lateral airflow mechanism used by both of our participants to produce high-frequency notes.


Sign in / Sign up

Export Citation Format

Share Document