scholarly journals Infections of the Urinary Tract of Bacterial Origin in Dogs and Cats

2021 ◽  
Vol 65 (1) ◽  
pp. 59-66
Author(s):  
T. Kocúreková ◽  
J. Koščová ◽  
V. Hajdučková

Abstract The diseases of the urinary tract in small animal medicine, especially in dogs and cats, occur frequently with different etiologies. The most common cause of urinary tract infections (UTIs) are bacteria which enter upwards through the urethral opening. UTIs occur in hosts with compromised defence mechanisms in which the virulent microbes can adhere, multiply and persist in the urinary tract. In addition to bacteria, also viruses or fungi may infect the urinary tracts. Bacterial infection can develop in the upper (kidneys and ureters) or lower (bladder, urethra) urinary tract and are manifested by various clinical signs such as: frequent or difficult and painful urination, presence of blood in the urine, or its foul odour. The symptoms in sick animals are often accompanied by fever, discomfort, and loss of appetite. The UTIs in dogs and cats are caused by both Gram-negative (e. g. Escherichia coli, Pseudomonas aeruginosa, Klebsiella spp., Proteus spp.) and Gram-positive (e. g. Staphylococcus spp., Streptococcus spp., and Enterococcus spp.) bacteria. The properly performed aseptic sampling of the urine is one of the most important steps in bacteriological diagnostics. In this study, 105 urine samples were collected from dogs and cats. The cultivation, microscopy and biochemical examinations were used for species identification. Finally, the bacteriological examination included also determining the susceptibility of pathogens against antibiotics by the disc-diffusion method. The results were processed and expressed as a percentage according to identified pathogens, animal species, sex, breed and age. The uropathogens were diagnosed mainly in males aged 7—10 years. The most commonly identified pathogens were Escherichia coli, Streptococcus spp. and Staphylococcus spp. Tests of bacterial susceptibility to antibiotics showed that enrofloxacin, cefotaxime, and cephazolin were the most effective against uropathogens.

2014 ◽  
Vol 8 (07) ◽  
pp. 818-822 ◽  
Author(s):  
Farzaneh Firoozeh ◽  
Mohammad Zibaei ◽  
Younes Soleimani-Asl

Introduction: Plasmid-mediated quinolone resistance, which complicates treatment, has been increasingly identified in Escherichia coli isolates worldwide. The purpose of this study was to identify the plasmid-mediated qnrA and qnrB genes among the quinolone-resistant Escherichia coli isolated from urinary tract infections in Iran. Methodology: A total of 140 Escherichia coli isolates were collected between March and October 2012 from urinary tract infections in Khorram Abad, Iran. All isolates were tested for quinoloe resistance using the disk diffusion method. Also, all quinolone-resistant isolates were screened for the presence of the qnrA and qnrB genes by polymerase chain reaction. Minimum inhibitory concentrations (MICs) of ciprofloxacin for the qnr-positive isolates were determined. Results: One hundred sixteen (82.8%) of 140 Escherichia coli isolates were nalidixic acid-resistant; among them, 14 (12.1%) and 9 (7.8%) were qnrA and qnrB-positive, respectively. Two quinolone-resistant isolates harbored both qnrA and qnrB. Among 63 ciprofloxacin-resistant isolates, 14 (22.2%) and 9 (14.3%) were found to carry qnrA and qnrB genes, respectively. The ciprofloxacin MIC range was 0.25–512 μg/mL for 23 qnr-positive Escherichia coli isolates, 18 of which had MICs values of 4–512 μg/mL. Conclusion: Our study shows that the frequency of plasmid-mediated quinolone resistance genes among E. coli isolates in Iran is high.


2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Shima Sadat Lesani ◽  
Mohammad Soleimani ◽  
Pegah Shakib ◽  
Mohammad Reza Zolfaghari

Background: Escherichia coli is considered as one of the causes of opportunistic infections. Nowadays, due to the increase in drug resistance, the treatment of these infections has become very difficult and they are recognized as the main causes of death in hospitalized patients. Objectives: The aim of this study was to determine the prevalence of blaTEM, blaSHV, and blaCTX-M genes in E. coli strains isolated from the urinary tract infection in patients in Intensive Care Units of three different hospitals in Qom, Iran. Methods: This study was conducted in three months from October to December 2014. A total of 200 E. coli samples were taken from the patients with urinary tract infections in Intensive Care units of Qom hospital. The disc diffusion method was used to determine the susceptibility pattern of antibiotic and phenotypic confirmatory tests for screening of the expanded spectrum beta-lactamase (ESBL) isolates. The presence of blaTEM, blaSHV, and blaCTX-M genes was evaluated by the polymerase chain reaction (PCR) assay. Results: Of 200 samples, ampicillin (96%) and nitrofurantoin (19.5%) showed the highest and lowest drug resistance, respectively. A total of 156 isolates (78%) were identified as ESBLs using the phenotypic method. Moreover, 76 (38%), 90 (45%), and 123 (61.5%) isolates consisted of blaCTX-M, blaSHV, and blaTEM, respectively. Conclusions: Overall, the findings of this study showed that blaTEM was the most common gene with a frequency of 61.5% in ESBL E. coli.


2018 ◽  
Vol 12 (04) ◽  
pp. 244-249
Author(s):  
Abdelhakim Aouf ◽  
Taha Gueddi ◽  
Bilal Djeghout ◽  
Houria Ammari

Introduction: The frequency of Enterobacteriaceae involved in urinary tract infections (UTI) has increased significantly since the early 1990s, particularly in at-risk facilities such as resuscitation, surgery, urology and nephrology. The objective of this study was to evaluate the antimicrobial susceptibility of Enterobacteriaceae causing urinary tract infections (UTIs)at the University Hospital Centre of Benimessous in Algiers. Methodology: The study was designed as a retrospective study (between January 1st 2010 and December 31st 2012) and a prospective study (between January 1standApril 30th 2013) on 13,611 urine samples. Antimicrobial resistance phenotyping was conducted on the bacterial isolates using disk-diffusion method. Results: On 13,611 urine samples analysed, 1,790 (13.15%) fulfilled the criteria for urinary tract infection. Enterobacteriaceae were identified in 1,561 analysed samples (87%). Escherichia coli was the dominant uropathogen (66,15%) in both hospitalized and non-hospitalized patients. The other main detected Enterobacteriaceae members were Klebsiella pneumoniae (11,96%) and Proteus mirabilis (5,42%). Analysis of results showed also that women were more prone to UTI than men with sex ratio of 3.76(W/M). The susceptibilities of isolated Enterobacteriaceae to antibiotics revealed that they had acquired resistance to several classes, particularly toward β-lactams. Resistance frequencies were relatively high to ampicillin and sulfomethoxasole, while being very low to aminoglycosides and furans. Results obtained revealed also that 7% of isolates where resistant to third generation cephalosporins by production of extended spectrum β-lactamases (ESBL). Conclusions: The continuous monitoring of antibiotic resistance of uropathogenic Escherichia coli is crucial to guide the clinician to choose the best empiric treatment.


Author(s):  
Mustafa Sofiur Rahman ◽  
Ritu Garg ◽  
Varsha A. Singh ◽  
Dipankar Biswas

Background: Escherichia coli are the most common cause of urinary tract infections in community as well as hospital settings. Emergence of drug resistance in Escherichia coli due to various mechanisms makes the treatment options very limited. This study was undertaken to detect ESBLs in uropathogenic Escherichia coli isolates and to determine their antimicrobial susceptibility pattern in rural setting.Methods: A prospective study was done on 502 E. coli isolates from clinically suspected cases of urinary tract infections (UTI) patients of all age groups. All samples were inoculated on Cysteine Lactose Electrolyte Deficient Agar (CLED). Organisms grown in pure culture were identified by standard biochemical tests. Antibiotic susceptibility test was done by the Kirby Bauer Disc diffusion method on Muller Hinton agar. ESBL detection was done as per CLSI guidelines.Results: Of the 502 isolates of Escherichia coli, nitrofurantoin (82%) was found be most sensitive antimicrobial followed by amikacin (73%), gentamycin (71%) and imipenem (64%). Common empirically used antibiotics like fluroquinolones and Cotrimoxazole drugs showed alarming rate of resistance. 60% isolates were found to be multidrug resistant. ESBL production was detected in 31% isolates. ESBL producing strains were found to be more drug resistant than non ESBL producing strains.Conclusions: So, drug resistance due to production of ESBLs in Escherichia coli is a serious threat for clinicians. Strict infection control measures and early detection of beta lactamase producing isolates are the need of the hour to contain the emergence of this type of resistance.


2021 ◽  
pp. 212-219
Author(s):  
Souadkia Sarra ◽  
Mbarga Manga Joseph Arsene ◽  
Volina Elena Grigorievna ◽  
Podoprigora Irina Victorovna ◽  
Yashina Natalia Vyacheslavovna ◽  
...  

Background and Aim: Uropathogenic Escherichia coli (UPEC) is commonly involved in urinary tract infections (UTIs), which are generally treated with antibiotics. However, the emergence of multidrug-resistant (MDR) strains of UPEC has made the treatment difficult. There is thus a need to continuously assess their sensitivity to antibiotics. This study aimed to determine the antibiotic resistance patterns and MDR phenotypes of UPEC strains isolated from children diagnosed with UTIs at the Russian Children's Clinical Hospital in Moscow, Russia. Materials and Methods: Kirby–Bauer's disc diffusion method was used to study the sensitivity to antibiotics of 106 UPEC isolates from urine specimens from children (aged from 9 months to 18 years old) diagnosed with UTIs. The results were interpreted in accordance with the Clinical and Laboratory Standards Institute guidelines and the correlations of variables with the degree to which each antibiotic inhibited the UPEC strains in terms of diameter on the disc were determined using Spearman's rank correlation test. A t-test and principal component analysis were performed to visualize the correlations of the susceptibility of UPEC to antibiotics with the age and sex of the patients. Statistical significance was set at p≤0.05. Results: Among the 106 UPEC strains tested, none (0%) showed resistance to fosfomycin (FO), while 84 (79.2%) were resistant (R) to at least one antibiotic. The highest rates of resistance were observed to amoxicillin (69.8%), ampicillin (62.3%), cefazolin (39.6%), trimethoprim (TR) (37.7%), ceftriaxone (34.9%), and tetracycline (33.0%). Interestingly, 22 (20.8%) strains were R to imipenem. UPEC isolates from males aged 1-6 years were more R to antibiotics than those from the other groups, with the exception of TR, to which UPEC isolates from females aged 13-18 years old were less sensitive (S). The multidrug-resistance (MDR) index ranged between 0.00 and 0.75 and we found that more than a quarter of UPEC (31/106) had an MDR index ≥0.5 and only 22 (20.7%) strains were S to all antibiotics tested (MDR index=0). Finally, Spearman's rank correlation test showed that, with the exception of FO, there were correlations between the inhibition diameters of all other antibiotics. Conclusion: FO is the only antibiotic to which all UPECs were S and may be suggested as the first line of treatment for UPEC. Further research is needed to continue monitoring antibiotic resistance and to investigate the genetic features associated with such resistance observed in this study.


2020 ◽  
Vol 14 (4) ◽  
pp. 2577-2584
Author(s):  
Tariq Ahmad Shah ◽  
P. Preethishree ◽  
Ashwini ◽  
Vidya Pai

Urinary tract infection (UTI) is one of the most common complaints in the outpatient clinic and a major health problem owing to the emergence of antibiotic resistance and biofilm formation. The objective of this study was to isolate and identify the causative bacterial agent of UTI and detect in vitro biofilm formation by Escherichia coli and investigate its correlation with antibiotic resistance. Urine samples from 519 patients with suspected UTIs were collected and processed by conventional microbiological procedures. Antimicrobial susceptibility testing for E. coli isolates was performed on Mueller Hinton agar (MHA) plates using the Kirby-Bauer disk diffusion method. Biofilm production was evaluated using the tissue culture plate method. Of 519 urine samples, 115 (22.1%) showed significant bacteriuria. The most common isolate was E. coli (n=57, 49.6%), followed by Klebsiella spp. (n=23, 20%). All E. coli isolates were evaluated for their ability to form biofilms in vitro. Of 57 isolates, 50 (87.7%) were biofilm producers and 7 (12.3%) were non-biofilm producers. Antibiogram of E. coli isolates revealed the highest resistance to ampicillin (96.5%) and nitrofurantoin (91.2%), followed by amoxyclav (82.5%), ceftazidime (73.7%), cefepime (71.9%), and tetracycline (71.9%). A significant association (p<0.05) was observed between biofilm formation and resistance to amoxyclav, ceftazidime, cefepime, imipenem, and nitrofurantoin. A significant correlation was noted between biofilm production and antibiotic resistance. Hence, screening of all isolates of uropathogenic E. coli for biofilm production and studying their antibiogram would allow appropriate choice of antibiotic therapy.


1976 ◽  
Vol 4 (4) ◽  
pp. 326-329
Author(s):  
R E Wooley ◽  
J L Blue

The most prevalent microorganisms isolated from urine specimens of dogs (385) and cats (132) with clinical signs of urinary tract infections were Escherichia coli, Proteus spp., and Staphylococcus aureus. The results of quantitative urine-culturing methods showed 48.6% of the canine and 12.1% of the feline specimens had more than 10(5) organisms per ml of urine. The bacteria isolated appear to have a greater resistance to antibacterial agents than previously reported.


2013 ◽  
Vol 32 (3) ◽  
pp. 233-238 ◽  
Author(s):  
Basudha Shrestha ◽  
Rajesh Lal Gurubacharya ◽  
Basanta Maharjan ◽  
Sanjit Shrestha

Introduction: Antibiotic resistance of urinary tract pathogens has increased globally. Updated knowledge of the antibiotic resistance patterns of uropathogens in the health institutes is important for the selection of an appropriate empirical antimicrobial therapy. The aim of this study was to evaluate the multi drug resistant urinary isolates in the children from 1 to15 years and evaluate the options for empiric antibiotic therapy. Materials and Methods: The study was conducted from December 2011 to May 2012 in the Bacteriology laboratory, Kathmandu Model Hospital. Urine samples received in the laboratory were processed for routine, culture and its sensitivity. The antimicrobial susceptibility of bacterial isolates was determined following Clinical and Laboratory Standard Institute (CLSI) recommended Kirby-Bauer Disc Diffusion method. Results: Of the total 372 urine samples received in the laboratory, 60 (16.13%) showed significant growth; of which 55.0 % (33/60) were MDR isolates. Escherichia coli were the predominant isolate from urine sample. Out of 49 Escherichia coli isolates, 27 (45.0%) were Multi drug resistant. Enterococcus faecalis (N=3) was the most predominant Gram positive isolate and 66.67 % (2/3) of this organism were multi drug resistant. Among the first line drugs used against gram negative isolates, nitrofurantoin was the most effective drug followed by quinolones, while among the second line drugs; meropenem was the most effective drug followed by chloramphenicol and amikacin, whereas; nitrofurantoin (100%) was the most effective drug for Gram positive isolates followed by norfloxacin and cefotaxime. Conclusion: High percentages of multi drug resistant uropathogens were revealed in children. Nitrofurantoin was found to be the most effective drug for gram positive, gram negative and multi drug resistant isolates. DOI: http://dx.doi.org/10.3126/jnps.v32i3.6771 J. Nepal Paediatr. SocVol.32(3) 2012 233-238


2020 ◽  
Vol 5 (4) ◽  
pp. 176
Author(s):  
Purity Z. Kubone ◽  
Koleka P. Mlisana ◽  
Usha Govinden ◽  
Akebe Luther King Abia ◽  
Sabiha Y. Essack

We investigated the phenotypic and genotypic antibiotic resistance, and clonality of uropathogenic Escherichia coli (UPEC) implicated in community-acquired urinary tract infections (CA-UTIs) in KwaZulu-Natal, South Africa. Mid-stream urine samples (n = 143) were cultured on selective media. Isolates were identified using the API 20E kit and their susceptibility to 17 antibiotics tested using the disk diffusion method. Extended-spectrum β-lactamases (ESBLs) were detected using ROSCO kits. Polymerase chain reaction (PCR) was used to detect uropathogenic E. coli (targeting the papC gene), and β-lactam (blaTEM/blaSHV-like and blaCTX-M) and fluoroquinolone (qnrA, qnrB, qnrS, gyrA, parC, aac(6’)-Ib-cr, and qepA) resistance genes. Clonality was ascertained using ERIC-PCR. The prevalence of UTIs of Gram-negative etiology among adults 18–60 years of age in the uMgungundlovu District was 19.6%. Twenty-six E. coli isolates were obtained from 28 positive UTI samples. All E. coli isolates were papC-positive. The highest resistance was to ampicillin (76.9%) and the lowest (7.7%) to amoxicillin/clavulanic acid and gentamycin. Four isolates were multidrug-resistant and three were ESBL-positive, all being CTX-M-positive but SHV-negative. The aac(6’)-Ib-cr and gyrA were the most detected fluoroquinolone resistance genes (75%). Isolates were clonally distinct, suggesting the spread of genetically diverse UPEC clones within the three communities. This study highlights the spread of genetically diverse antibiotic-resistant CA-UTI aetiologic agents, including multidrug-resistant ones, and suggests a revision of current treatment options for CA-UTIs in rural and urban settings.


2021 ◽  
Vol 10 (7) ◽  
pp. 414-418
Author(s):  
Greeshma Hareendranath

BACKGROUND Escherichia coli is one of the most important causes of urinary tract infections (UTIs). Increased antibiotic resistance may limit the therapeutic options for the treatment of these infections. Fosfomycin trometamol is a phosphonic acid derivative, which acts primarily by interfering with bacterial peptidoglycan synthesis with broad spectrum of activity against agents causing urinary tract infection with good antibiofilm activity and limited reports of resistance and hence is increasingly called upon for the treatment of multi drug resistant (MDR) organisms causing UTI. There are limited studies from India regarding the efficacy of this drug; so, the study was conducted to determine the in vitro efficacy of fosfomycin against uropathogenic MDR E. coli. METHODS This was a prospective study done in the Department of Microbiology, Government T.D. Medical College, Alappuzha, over a period of 1 year from April 2018 to March 2019. A total of 150 MDR urine samples were processed by routine microbiological methods and after identification of E. coli urinary isolates, antibiotic susceptibility testing was performed and results were interpreted following the Clinical and Laboratory Standards Institute guidelines (CLSI). Fosfomycin sensitivity was tested by the Kirby-Bauer disc diffusion method. RESULTS Among the 150 MDR urinary E. coli isolates, 148 (98 %) were sensitive to fosfomycin in our study. The susceptibility rate of fosfomycin was clearly higher than other commonly used drugs for UTI. All extended-spectrum beta-lactamases (ESBL) producing E. coli were sensitive to this drug. The susceptibility for nitrofurantoin was fair, whereas for ampicillin, norfloxacin, cefotaxime and trimethoprim / sulphamethoxazole was found poor. Relatively better rates of resistance were observed for parenteral antibiotics. CONCLUSIONS With an enormous increase in the bacterial pathogens resistant to first-line antibiotics, there has been a revival in the use of fosfomycin. The convenience of a single dose regimen, a good activity proven invitro, and minimal propensity for development of resistance pathogens makes fosfomycin an attractive regimen for the treatment of uncomplicated community and hospital acquired UTIs. In this regard, with the existing limited options for treating MDR organisms, fosfomycin finds its utility acting as an effective and promising option in the treatment of UTIs due to MDR pathogens in the future.


Sign in / Sign up

Export Citation Format

Share Document