Influence of soil tillage and erosion on the dispersion of glyphosate and aminomethylphosphonic acid in agricultural soils

2014 ◽  
Vol 28 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Gorana Rampazzo Todorovic ◽  
Nicola Rampazzo ◽  
Axel Mentler ◽  
Winfried E.H. Blum ◽  
Alexander Eder ◽  
...  

Abstract Erosion processes can strongly influence the dissipation of glyphosate and aminomethylphosphonic acid applied with Roundup Max® in agricultural soils; in addition, the soil structure state shortly before erosive precipitations fall can be a key parameter for the distribution of glyphosate and its metabolite. Field rain simulation experiments showed that severe erosion processes immediately after application of Roundup Max® can lead to serious unexpected glyphosate loss even in soils with a high presumed adsorption like the Cambisols, if their structure is unfavourable. In one of the no-tillage-plot of the Cambisol, up to 47% of the applied glyphosate amount was dissipated with surface run-off. Moreover, at the Chernozem site with high erosion risk and lower adsorption potential, glyphosate could be found in collected percolation water transported far outside the 2x2 m experimental plots. Traces of glyphosate were found also outside the treated agricultural fields.

Soil Systems ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 53 ◽  
Author(s):  
Joshua Padilla ◽  
H. Selim

Glyphosate (N-(phosphonomethyl) glycine) (GPS) is currently the most commonly used herbicide worldwide, and is generally considered as immobile in soils. However, numerous reports of the environmental occurrence of the herbicide coupled with recent evidence of human toxicity necessitate further investigation as to the behavior of GPS in the soil environment. Batch sorption studies along with miscible displacement experiments were carried out in order to assess the mobility of GPS in two Louisiana agricultural soils; Commerce silt loam and Sharkey clay. Batch results indicated a high affinity of both soils for solvated GPS, with greater affinity observed by the Sharkey soil. GPS sorption in the Commerce soil was most likely facilitated by the presence of amorphous Fe and Al oxides, whereas the high cation exchange capacity of the Sharkey soil likely allows for GPS complexation with surface exchangeable poly-valent cations. Miscible displacement studies indicate that GPS mobility is highly limited in both soils, with 3% and 2% of the applied herbicide mass recovered in the effluent solution from the Commerce and Sharkey soils, respectively. A two-site multi-reaction transport model (MRTM) adequately described GPS breakthrough from both soils and outperformed linear modeling efforts using CXTFIT. Analysis of extracted herbicide residues suggests that the primary metabolite of GPS, aminomethylphosphonic acid (AMPA), is more mobile in both soils, although both compounds are strongly retained.


2020 ◽  
Author(s):  
Pawan Thapa

Abstract Background: Soil erosion causes topsoil loss, which decreases fertility in agricultural land. Spatial estimation of soil erosion essential for an agriculture-dependent country like Nepal for developing its control plans. This study evaluated impacts on Dolakha using the Revised Universal Soil Loss Equation (RUSLE) model; analyses the effect of Land Use and Land Cover (LULC) on soil erosion. Results: The soil erosion rate categorized into six classes based on the erosion severity, and 5.01% of the areas found under extreme severe erosion risk (> 80 Mg ha-1yr-1) addressed by decision-makers for reducing its rate and consequences. Followed by 10 % classified between high and severe range from 10 to 80 Mg ha-1yr-1. While 15% and 70% of areas remained in a moderate and low-risk zone, respectively. Result suggests the area of the north-eastern part suffers from a high soil erosion risk due to steep slope. Conclusions: The result produces a spatial distribution of soil erosion over Dolakha, which applied for conservation and management planning processes, at the policy level, by land-use planners and decision-makers.


1997 ◽  
Vol 20 ◽  
pp. 9-26
Author(s):  
Antonio José Teixeira Guerra

The present paper concerns rill initiation and evolution, taking into account its role on the erosion process. Therefore, several aspects of the process are developed, such as: the process itself, evidences of the process, through field and laboratory experiments, the importance of the models, the consequences to agricultural soils and the conectivity with other soil erosion processes.


2019 ◽  
Vol 17 (2) ◽  
pp. 323
Author(s):  
Rhoshandhayani Koesiyanto Taslim ◽  
Marga Mandala ◽  
Indarto Indarto

Erosion is an event of eroding soil that occurs naturally.  However, human activities that change land use from natural (forestry, plantation, rural areas) to urban features can alter the erosion processes.  Rapid calculation of erosion level for the wide area is necessary for the management and conservation planning.  This research aims to analyze the erosion level in East Java area using USLE (Universal Soil Loss Equation) and GIS. The erosivity factor (R) is calculated from rainfall data. Vegetation factor (C) and the conservation factor (P) estimated from land use map.  The length and slope factor (LS) are calculated from the ASTER GDEM2, and the erodibility factor (K) is obtained from interpretation of soil map. Furthermore, all factors were analysed to calculate erosion rate. The result shows that the average erosion rate in East Java regions is 10,30 tons/ha/year.  The result also show that 78,71% area of East Java is classified as very low erosion rate (0-15 tons/ha/year); 10,75% classified as low erosion rate (15-60 tons/ha/year); 6,39% classified as  moderate erosion rate (60-180 tons/ha/year); and 2,83% is severe type (180-480 tons/ha/year). Only 1,31% from the total area is classified as very severe erosion rate (>480 tons/ha/year). The result also shows that USLE can be used to facilitate rapid erosion prediction for wide area.


2013 ◽  
Vol 27 (2) ◽  
pp. 203-209 ◽  
Author(s):  
N. Rampazzo ◽  
G. Rampazzo Todorovic ◽  
A. Mentler ◽  
W.E.H. Blum

Abstract The results showed that glyphosate is initially adsorbed mostly in the upper 2 cm. It is than transported and adsorbed after few days in deeper soil horizons with concomitant increasing content of its metabolite aminomethylphosphonic acid. Moreover, Fe-oxides seem to be a key parameter for glyphosate and aminomethylphosphonic adsorption in soils. This study confirmed previous studies: the analysis showed lower contents of dithionite-soluble and Fe-oxides for the Chernozem, with consequently lower adsorption of glyphosate and aminomethylphosphonic as compared with the Cambisol and the Stagnosol.


2021 ◽  
pp. 77-104
Author(s):  
O. A. Gordienko ◽  
E. A. Ivantsova

The paper deals with morphological properties of agrogenically transformed chestnut soils of slope lands in the south of the Volga upland within the urban landscape of Volgograd. It is established that as a result of agrogenesis, erosion, land use change, as well as of agroforestry reclamation measures performed, both anthropogenic deeply transformed and postagrogenic soils have been formed. The greatest changes under the influence of agrogenesis are noted in morphological structure of profiles. Agrogenesis results in degradation of soils involved in active agricultural use due to intensified sheet and rill erosion. In eroded soils there is noticed a decrease in the thickness of agrohumic layer, formation of furrow bottom compaction and changes in structure. Their characteristic feature is the presence on the surface of a homogeneous agro-abraded horizon with lumpy structure, in the lower part of which secondary carbonates inherited from the carbonate horizon and resulted from deep plowing may occur. Soils slightly exposed and not exposed to erosion processes have an agrohumus horizon on the surface, which depending on soil tillage can have thickness from 19 to 36 cm. At present, the annual agricultural practices at the plot include mowing of weeds and disk plowing to 20 cm depth. Earlier moldboard plowing to 40 cm depth was performed. All agrogenically-modified soils are characterized by HCl reaction with carbonates from the surface. Carbonate accumulations in agrogenic soils, as a rule, have a segregated form that indicates rapid summer drying of the profile and short period of soil solutions migration. Upper boundary of accumulative-carbonate horizons of agrogenic soils on the average is at 42 cm depth. Such occurrence of carbonate horizons in general is typical both of natural non-eroded soils of dry-steppe zone and of soils involved in agricultural land use. Under forest plantations the original chestnut soils were transformed into turbated agrozems due to deep ameliorative cultivation preceded planting of woody and shrub vegetation. Soil preparation practices applied before tree species planting resulted in transformation of original chestnut soils into turbated agrozems, which is due to deep (up to 60 cm) soil reclamation. The forest belt, being a “barrier” between the field parts, contributed to the formation of a stratified small horizon (trait) of 10 cm thickness for more than 70 years due to the constant inflow of fine-grained soil and decay of leaf and herbaceous debris. 


2020 ◽  
Vol 17 (1) ◽  
pp. 67
Author(s):  
Oteng Haridjaja

Soil consevation management system is an activity for diminishing sediment enrichment ratio and nutrient leacheds by water run off and soil erosion processes. The research was aimed to study sediment enrichment ratio and nutrient leached by run off and soil erosion on cacao plantations. Arachis pintoi with strips parallel contour and multiple strip cropping of upland rice or soybean (Glycine max) were planted to improve soil physical characterictic on cacao plantation as a main plant. The expriment were conducted with treatments as 10-15% and 40-45% slopes, 5-7 months and 25-27 months cacao ages (as main plants). As sub plots are T1 as a monoculture which to be cleaning under the plant canopy, T2 as a multiple strip cropping of upland rice or soybean, T3 as a combination of T2 and A. Pintoi strip. The results showed that  total N, P2O5, and K2O and organic-C contents in water run off and soil sediments indicated that T3 >T2 >T1 treatment, with the contents of each nutrient: T3 (total N 0.18%; 24.87 mg 100 g-1 P2O5: K2O 15.16 mg 100 g-1), T1 (total N 0.16%, 22.39 mg 100g-1 P2O5, K2O 11.50 mg 100g-1).  The total N, P2O5, K2O and organic-C soil contents < accumulation nutrient contents of total water run off and soil sediment transport. All of treathments have sediment enrichment ratios > 1.


Author(s):  
Helen Brooks ◽  
Iris Möller ◽  
Tom Spencer ◽  
Kate Royse ◽  
Simon James Price

Salt marshes and, to a lesser extent, tidal flats, attenuate incoming hydrodynamic energy, thus reducing flood and erosion risk in the coastal hinterland. However, marshes are declining both globally and regionally (the Northwest European region). Salt marsh resistance to incoming hydrodynamic forcing depends on marsh biological, geochemical and geotechnical properties. However, there currently exists no systematic study of marsh geotechnical properties and how these may impact both marsh edge and marsh surface erosion processes (e.g. surface removal, cliff undercutting, gravitational slumping). This has led to poor parameterization of marsh evolution models. Here, we present a systematic study of salt marsh and tidal flat geotechnical properties (shear strength, bulk density, compressibility, plasticity and particle size) at Tillingham, Essex, UK.


2018 ◽  
Vol 20 (1) ◽  
pp. 56-65
Author(s):  
Theodoros GOURNELOS ◽  
Niki EVELPIDOU ◽  
Anna KARKANI ◽  
Eirini KARDARA

There is a wide range of alternative approaches to study erosion processes. In this paper, we describe the construction of a model based on the interaction of Geographical Information System (GIS) and Artificial Neural Networks (ANN). The neural model uses supervised competitive learning process. The whole process begins with the digitization of collected data and the definition of the input variables, such as slope form and gradient, susceptibility to erosion and protective cover. The input variables are transformed into the erosion risk output variable using the neural model. The last stage is the development of a map of erosion risk zones. As a case study the island of Corfu (Ionian Sea, Greece) was chosen, which consists of lithologies very vulnerable to erosion and receives considerable amounts of rainfall, especially in comparison to the rest of Greece. Finally, the whole model was validated and its proper function was confirmed by field data observations.


Sign in / Sign up

Export Citation Format

Share Document