scholarly journals Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases

2013 ◽  
Vol 6 (3) ◽  
pp. 103-110 ◽  
Author(s):  
Harold I. Zeliger

ABSTRACT Many studies have associated environmental exposure to chemicals with neurological impairments (NIs) including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders (NDDs) including autism and attention deficit hyperactivity disorder (ADHD); neurodegenerative diseases (NDGs) including Alzheimer´s disease, Parkinson’s disease and amyotrophic lateral sclerosis (ALS). The environmental chemicals shown to induce all these diseases include persistent organic pollutants (POPs), the plastic exudates bisphenol A and phthalates, low molecular weight hydrocarbons (LMWHCs) and polynuclear aromatic hydrocarbons (PAHs). It is reported here that though these chemicals differ widely in their chemical properties, reactivities and known points of attack in humans, a common link does exist between them. All are lipophilic species found in serum and they promote the sequential absorption of otherwise non-absorbed toxic hydrophilic species causing these diseases.

2013 ◽  
Vol 6 (2) ◽  
pp. 55-62 ◽  
Author(s):  
Harold I. Zeliger

Abstract Environmental chemical exposure has been linked to numerous diseases in humans. These diseases include cancers; neurological and neurodegenerative diseases; metabolic disorders including type 2 diabetes, metabolic syndrome and obesity; reproductive and developmental disorders; and endocrine disorders. Many studies have associated the link between exposures to environmental chemicals and cardiovascular disease (CVD). These chemicals include persistent organic pollutants (POPs); the plastic exudates bisphenol A and phthalates; low molecular weight hydrocarbons (LMWHCs); and poly nuclear aromatic hydrocarbons (PAHs). Here it is reported that though the chemicals reported on differ widely in chemical properties and known points of attack in humans, a common link exists between them. All are lipophilic species that are found in serum. Environmentally induced CVD is related to total lipophilic chemical load in the blood. Lipophiles serve to promote the absorption of otherwise not absorbed toxic hydrophilic species that promote CVD.


2020 ◽  
Vol 26 (12) ◽  
pp. 1251-1262 ◽  
Author(s):  
Octavio Binvignat ◽  
Jordi Olloquequi

: The global burden of neurodegenerative diseases is alarmingly increasing in parallel to the aging of population. Although the molecular mechanisms leading to neurodegeneration are not completely understood, excitotoxicity, defined as the injury and death of neurons due to excessive or prolonged exposure to excitatory amino acids, has been shown to play a pivotal role. The increased release and/or decreased uptake of glutamate results in dysregulation of neuronal calcium homeostasis, leading to oxidative stress, mitochondrial dysfunctions, disturbances in protein turn-over and neuroinflammation. : Despite the anti-excitotoxic drug memantine has shown modest beneficial effects in some patients with dementia, to date, there is no effective treatment capable of halting or curing neurodegenerative diseases such as Alzheimer’s disease, Parkinson disease, Huntington’s disease or amyotrophic lateral sclerosis. This has led to a growing body of research focusing on understanding the mechanisms associated with the excitotoxic insult and on uncovering potential therapeutic strategies targeting these mechanisms. : In the present review, we examine the molecular mechanisms related to excitotoxic cell death. Moreover, we provide a comprehensive and updated state of the art of preclinical and clinical investigations targeting excitotoxic- related mechanisms in order to provide an effective treatment against neurodegeneration.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 163
Author(s):  
Swapnil Gupta ◽  
Panpan You ◽  
Tanima SenGupta ◽  
Hilde Nilsen ◽  
Kulbhushan Sharma

Genomic integrity is maintained by DNA repair and the DNA damage response (DDR). Defects in certain DNA repair genes give rise to many rare progressive neurodegenerative diseases (NDDs), such as ocular motor ataxia, Huntington disease (HD), and spinocerebellar ataxias (SCA). Dysregulation or dysfunction of DDR is also proposed to contribute to more common NDDs, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Amyotrophic Lateral Sclerosis (ALS). Here, we present mechanisms that link DDR with neurodegeneration in rare NDDs caused by defects in the DDR and discuss the relevance for more common age-related neurodegenerative diseases. Moreover, we highlight recent insight into the crosstalk between the DDR and other cellular processes known to be disturbed during NDDs. We compare the strengths and limitations of established model systems to model human NDDs, ranging from C. elegans and mouse models towards advanced stem cell-based 3D models.


2021 ◽  
Vol 22 (5) ◽  
pp. 2737
Author(s):  
Daisy Sproviero ◽  
Stella Gagliardi ◽  
Susanna Zucca ◽  
Maddalena Arigoni ◽  
Marta Giannini ◽  
...  

Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration.


Author(s):  
Marina Betancor ◽  
Laura Moreno-Martínez ◽  
Óscar López-Pérez ◽  
Alicia Otero ◽  
Adelaida Hernaiz ◽  
...  

AbstractThe non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. These diseases share different pathological features with other neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson’s disease or Alzheimer’s disease. Hitherto, there are no effective therapies to treat prion diseases. Here, we present a pilot study to test the therapeutic potential of TTC to treat prion diseases. C57BL6 wild-type mice and the transgenic mice Tg338, which overexpress PrPC, were intracerebrally inoculated with scrapie prions and then subjected to a treatment consisting of repeated intramuscular injections of TTC. Our results indicate that TTC displays neuroprotective effects in the murine models of prion disease reducing apoptosis, regulating autophagy and therefore increasing neuronal survival, although TTC did not increase survival time in these models.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Mark Wade ◽  
Heather Prime ◽  
Sheri Madigan

Neurodevelopmental disorders represent a broad class of childhood neurological conditions that have a significant bearing on the wellbeing of children, families, and communities. In this review, we draw on evidence from two common and widely studied neurodevelopmental disorders—autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD)—to demonstrate the utility of genetically informed sibling designs in uncovering the nature and pathogenesis of these conditions. Specifically, we examine how twin, recurrence risk, and infant prospective tracking studies have contributed to our understanding of genetic and environmental liabilities towards neurodevelopmental morbidity through their impact on neurocognitive processes and structural/functional neuroanatomy. It is suggested that the siblings of children with ASD and ADHD are at risk not only of clinically elevated problems in these areas, but also of subthreshold symptoms and/or subtle impairments in various neurocognitive skills and other domains of psychosocial health. Finally, we close with a discussion on the practical relevance of sibling designs and how these might be used in the service of early screening, prevention, and intervention efforts that aim to alleviate the negative downstream consequences associated with disorders of neurodevelopment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria Babu ◽  
Filippo Favretto ◽  
Alain Ibáñez de Opakua ◽  
Marija Rankovic ◽  
Stefan Becker ◽  
...  

AbstractAmyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with overlapping clinical features and the pathological hallmark of cytoplasmic deposits of misfolded proteins. The most frequent cause of familial forms of these diseases is a hexanucleotide repeat expansion in the non-coding region of the C9ORF72 gene that is translated into dipeptide repeat polymers. Here we show that proline/arginine repeat polymers derail protein folding by sequestering molecular chaperones. We demonstrate that proline/arginine repeat polymers inhibit the folding catalyst activity of PPIA, an abundant molecular chaperone and prolyl isomerase in the brain that is altered in amyotrophic lateral sclerosis. NMR spectroscopy reveals that proline/arginine repeat polymers bind to the active site of PPIA. X-ray crystallography determines the atomic structure of a proline/arginine repeat polymer in complex with the prolyl isomerase and defines the molecular basis for the specificity of disease-associated proline/arginine polymer interactions. The combined data establish a toxic mechanism that is specific for proline/arginine dipeptide repeat polymers and leads to derailed protein homeostasis in C9orf72-associated neurodegenerative diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Cybulak ◽  
Zofia Sokołowska ◽  
Patrycja Boguta

AbstractThere is limited information regarding the effect of biochar (BioC) on the fertility of fallow and grassland soils, as well as on the properties of their humic acids (HAs). The objective of this study was to evaluate with a 3-year field experiment the influence of BioC on the organic matter (OM) in Haplic Luvisol. BioC (obtained via wood waste pyrolysis at 650 °C) was applied to the soil of subplots under fallow and grassland at doses of 0, 1, 2 and 3 kg m−2. The soil samples were collected eight times. The physicochemical properties were determined for the soil and BioC by analysing the density, pH, surface charge, ash, and organic carbon content. Based on the changes in the structure of the HAs and their quantity in the soils, the chemical properties of the HAs were determined. The maximum BioC dose caused an increase in the content of Corg and HAs. BioC did not influence the humification degree coefficients of the HAs originated from fallow, whereas in the grassland, there were significant changes observed in these coefficient values, indicating that BioC may stimulate and accelerate the humification process of soil HAs. Increasing the BioC doses caused an increase in the soil’s HA content, suggesting an increase in soil sorption capacity. The fluorescence data showed BioC addition to the soil caused an increase in the number of structures characterised by low molecular weight and a low degree of humification.


2021 ◽  
pp. 1-8
Author(s):  
L. Propper ◽  
A. Sandstrom ◽  
S. Rempel ◽  
E. Howes Vallis ◽  
S. Abidi ◽  
...  

Abstract Background Offspring of parents with major mood disorders (MDDs) are at increased risk for early psychopathology. We aim to compare the rates of neurodevelopmental disorders in offspring of parents with bipolar disorder, major depressive disorder, and controls. Method We established a lifetime diagnosis of neurodevelopmental disorders [attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, communication disorders, intellectual disabilities, specific learning disorders, and motor disorders] using the Kiddie Schedule for Affective Disorders and Schizophrenia, Present and Lifetime Version in 400 participants (mean age 11.3 + s.d. 3.9 years), including 93 offspring of parents with bipolar disorder, 182 offspring of parents with major depressive disorder, and 125 control offspring of parents with no mood disorder. Results Neurodevelopmental disorders were elevated in offspring of parents with bipolar disorder [odds ratio (OR) 2.34, 95% confidence interval (CI) 1.23–4.47, p = 0.010] and major depressive disorder (OR 1.87, 95% CI 1.03–3.39, p = 0.035) compared to controls. This difference was driven by the rates of ADHD, which were highest among offspring of parents with bipolar disorder (30.1%), intermediate in offspring of parents with major depressive disorder (24.2%), and lowest in controls (14.4%). There were no significant differences in frequencies of other neurodevelopmental disorders between the three groups. Chronic course of mood disorder in parents was associated with higher rates of any neurodevelopmental disorder and higher rates of ADHD in offspring. Conclusions Our findings suggest monitoring for ADHD and other neurodevelopmental disorders in offspring of parents with MDDs may be indicated to improve early diagnosis and treatment.


Sign in / Sign up

Export Citation Format

Share Document