scholarly journals Rectifying memristor bridge circuit realized with human skin

2018 ◽  
Vol 9 (1) ◽  
pp. 184-192 ◽  
Author(s):  
Oliver Pabst

Abstract It has been demonstrated before that human skin can be modeled as a memristor (memory resistor). Here we realize a memristor bridge by applying two voltages of opposite signs at two different skin sites. By this setup it is possible to use human skin as a frequency doubler and half-wave rectifier which is an application of the non-linear electrical properties of human skin. The corresponding electrical measurements are non-linear since these are affected by the applied stimulus itself.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Oliver Pabst ◽  
Ørjan G. Martinsen ◽  
Leon Chua

AbstractMuch is already understood about the anatomical and physiological mechanisms behind the linear, electrical properties of biological tissues. Studying the non-linear electrical properties, however, opens up for the influence from other processes that are driven by the electric field or movement of charges. An electrical measurement that is affected by the applied electrical stimulus is non-linear and reveals the non-linear electrical properties of the underlying (biological) tissue; if it is done with an alternating current (AC) stimulus, the corresponding voltage current plot may exhibit a pinched hysteresis loop which is the fingerprint of a memristor. It has been shown that human skin and other biological tissues are memristors. Here we performed non-linear electrical measurements on human skin with applied direct current (DC) voltage pulses. By doing so, we found that human skin exhibits non-volatile memory and that analogue information can actually be stored inside the skin at least for three minutes. As demonstrated before, human skin actually contains two different memristor types, one that originates from the sweat ducts and one that is based on thermal changes of the surrounding tissue, the stratum corneum; and information storage is possible in both. Finally, assuming that different physiological conditions of the skin can explain the variations in current responses that we observed among the subjects, it follows that non-linear recordings with DC pulses may find use in sensor applications.


2019 ◽  
Vol 10 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Oliver Pabst ◽  
Steinar Andersen ◽  
Soban Ali Bhatti ◽  
Jørgen Brevik ◽  
Simen Anthony Fallaas ◽  
...  

Abstract Non-linear electrical properties of a (biological) tissue can be revealed by non-linear electrical measurements, which means that the applied stimulus itself affects the measurement. If resulting voltage–current plots exhibit pinched hysteresis loops, the underlying tissue may be classified as a memristor, a state dependent resistor. The aloe vera plant and apples have been found to be memristors. However, polarization processes on the electrodes are also non-linear and may affect the measurement. Apples and aloe vera conduct electrical current very well and it is likely that the recordings are actually dominated by the polarization impedance of the electrodes. Here, we study the non-linear properties of aloe vera and apples with two different measurement electrode types. Furthermore, we measured also on the extracted liquids from one aloe vera leaf and one apple, leading to similar results. We concluded, unlike previous studies on these subjects, that the memristive properties originate from electrochemical reactions on the electrodes rather than the apples or aloe vera themselves.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Oliver Pabst ◽  
Ørjan G. Martinsen ◽  
Leon Chua

2018 ◽  
Author(s):  
Arnab Chanda

Skin is the first point of contact of the human body with the outer environment, and influences the biomechanics of different organ systems in normal and diseased states. Wearable electronics such as fitness tracking equipment, motion sensing devices, and advanced wearables in prosthetics and orthotics are often used to quantify the interaction of the body with the environment during different physical activities, and improve health. These wearable equipment can be bulky and a source of discomfort to the human skin with prolonged wear. To date, very few flexible polymers have been developed which can conduct electricity and be used in wearable devices. In the current work, a novel conductive synthetic skin composite system was developed, which would be indispensable for integration into wearable technologies, and also allow the biomechanical testing of the human skin for different engineering and medical applications. The mechanical behavior of this polymer can be tuned to mimic the human skin from different locations of the body with varying stiffnesses, with a phenomenal degree of accuracy. The composite system is composed of short carbon fibers dispersed in a multi part silicone based matrix material. The volume fraction of the fibers were varied to control the mechanical and electrical properties of the composite. Uniaxial tensile tests were conducted to generate stress versus strain responses of the synthetic skin composites at different fiber volume fractions, and electrical measurements were recorded at different strains. Microscopy was used to understand composite fiber orientations in unstretched and stretched states, and its effects on the electrical conductivity of the material. Additionally, non-linear material characterization models were developed to characterize the composite variants. To the best of our knowledge, such an accurate synthetic skin composite system with tailorable electrical properties has not been developed; making this state of the art in bio mimicking and functionalization of the human skin.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2021 ◽  
Vol 12 (1) ◽  
pp. 73-81
Author(s):  
Oliver Pabst ◽  
Øystein Magnus Sørebø ◽  
Karoline Sjøen Andersen ◽  
Erlend Lemva Ousdal ◽  
Sean William Bråthen ◽  
...  

Abstract Human skin has been classified as a non-volatile memristor and it is shown that information can be stored within for at least three minutes. Here we investigate whether it is possible to store information up to 20 minutes. Furthermore, we investigate whether the information can be based on four different states, not just two (binary). We stored the information into the skin of the forehead of the test subjects under three different electrodes, which allows in principle for 64 different combinations (3 electrodes, 4 states) and one can think of numbers on the base of four. For this experiment, we decided on the numbers 1234 and 3024 (that correspond to numbers 27 and 50 in the decimal system). Writing of the different states was done by the application of DC voltage pulses that cause electro-osmosis in the sweat ducts (nonlinear electrical measurements). Based on our results, we were not able to distinguish between four different states. However, we can show that binary information storage in human skin is possible for up to 20 minutes.


2016 ◽  
Vol 868 ◽  
pp. 23-27
Author(s):  
Liang Liang Nie ◽  
Hang Zhou ◽  
Shi Di Tao ◽  
Yu Feng Li ◽  
Peng Zhang ◽  
...  

In this research, the anti-corona lacquer with different SiC content was fabricated. The surface resistivity of the lacquer at different voltage levels was measured, and the effect of the SiC content on electrical properties of SiC anti-corona coating was investigated. The results showed that the initial surface resistivity ρs decreased with increasing mass ratio of SiC to resin, while the non-linear coefficient β varied the opposite way. The surface resistivity was improved by adding suitable amount of graphite, which suited the requirements of multiple sections anti-corona structure.


1978 ◽  
Vol 235 (1) ◽  
pp. R93-R98 ◽  
Author(s):  
D. H. Perkel ◽  
B. Mulloney

Numerical parameters for a compartmental model of a neuron can be chosen to conform both to the neuron's structure and to its measured steady-state electrical properties. A systematic procedure for assigning parameters is described that makes use of the matrix of coefficients of the set of differential equations that embodies the compartmental model. The inverse of this matrix furnishes input resistances and voltage attenuation factors for the model, and an interactive modification of the original matrix and its inverse may be used to fit the model to anatomic and electrical measurements.


Sign in / Sign up

Export Citation Format

Share Document