The concentration quenching of photoluminescence in Eu3+-doped La2O3

2013 ◽  
Vol 37 (1) ◽  
pp. 47-54 ◽  
Author(s):  
V. Đorđević ◽  
Ž. Antić ◽  
M. G. Nikolić ◽  
M. D. Dramićanin

Abstract This work explores the influence of dopant concentration on photoluminescent emission and kinetics of Eu3+-doped (0.2−10 at.%) nanocrystalline lanthanumoxide powders. The X-ray diffraction analysis confirmed that all samples crystallize in La2O3 hexagonal phase with space group P3¯ m1. Transmission electron microscopy showed particles with non-uniform shape and diverse size distribution with an average particle size of (95 ± 5) nm. The room temperature photoluminescence spectra of all samples contain characteristic Eu3+ luminescence lines with the most pronounced red 5D0 →7F2 emission at about 626 nm. The maximum intensity of red emission is observed for the sample containing 5at.% of Eu3+ ions. The emission kinetics was recorded in the temperature range from 10K to 300 K. The maximum lifetime value of 0.98 ms obtained for the sample with 0.5at.% Eu3+ at room temperature increases up to 1.3ms at 10 K.

2012 ◽  
Vol 02 (01) ◽  
pp. 1250007 ◽  
Author(s):  
LAXMAN SINGH ◽  
U. S. RAI ◽  
K. D. MANDAL ◽  
MADHU YASHPAL

Ultrafine powder of CaCu2.80Zn0.20Ti4O12 ceramic was prepared using a novel semi-wet method. DTA/TG analysis of dry powder gives pre-information about formation of final product around 800°C. The formation of single phase was confirmed by X-ray diffraction analysis. The average particle size of sintered powder of the ceramic obtained from XRD and Transmission electron microscopy was found 59 nm and 102 nm, respectively. Energy Dispersive X-ray studies confirm the stoichiometry of the synthesized ceramic. Dielectric constant of the ceramic was found to be 2617 at room temperature at 1 kHz.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Branka Babić-Stojić ◽  
Vukoman Jokanović ◽  
Dušan Milivojević ◽  
Zvonko Jagličić ◽  
Darko Makovec ◽  
...  

We present a study of magnetic and structural properties of CoFe2O4nanoparticles suspended in an organic liquid. Transmission electron microscopy shows that the nanoparticles have a narrow size distribution of average particle size 5.9 ± 1.0 nm. X-ray diffraction shows that the particles are of cubic spinel crystal structure. Dynamic light scattering measurements reveal the existence of an organic shell around the CoFe2O4nanoparticles with an average hydrodynamic diameter of 14.4 nm. Coercive magnetic field atT=5 K is found to be 11.8 kOe. Disappearance of the coercive field and remanent magnetization at about 170 K suggests that the CoFe2O4nanoparticles are superparamagnetic at higher temperatures which is confirmed by the room temperature Mössbauer spectrum analysis. Saturation magnetization of the nanoparticles of 80.8 emu/g(CoFe2O4) at 5 K reaches the value detected in the bulk material and remains very high also at room temperature. The cobalt ferrite nanoparticle system synthesized in this work exhibits magnetic properties which are very suitable for various biomedical applications.


2005 ◽  
Vol 20 (8) ◽  
pp. 2154-2160 ◽  
Author(s):  
Hao-Tung Lin ◽  
Jow-Lay Huang ◽  
Wen-Tse Lo ◽  
Wen-Cheng J. Wei

Nanoscaled Cr2O3 powder with an average particle size of 20–40 nm, coated on alumina particles, has been produced by means of chemical vapor deposition (CVD) in a fluidized chamber, using the pyrolysis of Cr(CO)6 precursor. Amorphous and crystalline Cr2O3 particles were obtained when the temperatures of the pyrolysis were 300 and 400 °C, respectively. To prepare nanoscaled Cr3C2 powder from the nanometer-sized Cr2O3, carbonizing behavior of the Cr2O3 particles was investigated. It was found that, when amorphous Cr2O3 powders were carbonized in graphite furnace at 1150 °C for 2 h in vacuum (10−3 Torr), the powder was transformed into Cr3C2, while the crystalline Cr2O3 was transformed into a mixture of Cr7C3 and Cr3C2. The examinations by x-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy confirmed the transformation of the nano-sized Cr3C2 powders. The results of thermogravimetry and differential thermal analysis indicated that the transformation temperature was ∼1089 °C for amorphous Cr2O3 and ∼1128 °C for crystalline Cr2O3.


2021 ◽  
pp. 1873-1878
Author(s):  
Omar Abdulsada Ali ◽  
Sarmed S.M. Al-Awadi

Well dispersed Cu2FeSnSe4 (CFTSe) nanofilms were synthesized by hot-injection method. The structural and morphological measurements were characterized using XRD (X-ray diffraction), Raman spectroscopy, SEM (scanning electron microscopy), and TEM (transmission electron microscopy). Chemical composition and optical properties of as-synthesized CFTSe nanoparticles were characterized using EDS (energy dispersive spectroscopy) and UV-Vis spectrophotometry. The average particle size of the nanoparticles was about 7-10 nm. The UV-Vis absorption spectra showed that the synthesized CFTS nanofilms have a band gap (Eg) of about 1.16 eV. Photo-electrochemical characteristics of CFTSe nanoparticles were studied and indicated their potential application in photovoltaic applications.


2002 ◽  
Vol 17 (4) ◽  
pp. 723-726 ◽  
Author(s):  
Donglin Lia ◽  
Zhihong Wang ◽  
Liangying Zhang ◽  
Xi Yao ◽  
Haoshen Zhou

Nanocrystalline KTiOPO4 powders were prepared through a chemical process. This process involved the hydrolysis of KOOCCH3 · 2H2O, Ti(OC4H9)4, and PO(OR)3 to produce a homogeneous solution. A gel was formed by the partial evaporation of this solution. After the gel was decomposed at 450 °C, white amorphous powder remained. On calcinating up to 550 °C, the amorphous powder began to transform into nanocrystalline KTiOPO4 powders with an average particle size of 30–50 nm. The KTiOPO4 powders were investigated through x-ray diffraction, infrared spectroscopy, and transmission electron microscopy studies.


2016 ◽  
Vol 34 (3) ◽  
pp. 529-533 ◽  
Author(s):  
Anukorn Phuruangrat ◽  
Budsabong Kuntalue ◽  
Surachai Artkla ◽  
Surin Promnopas ◽  
Wonchai Promnopas ◽  
...  

AbstractPbMoO4 and PbWO4 were successfully synthesized by microwave radiation using different lead salts (acetate, chloride, nitrate and sulfate) and Na2MO4 (M = Mo, W) in propylene glycol. The products were characterized by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM, TEM), Fourier transform infrared (FT-IR), Raman spectroscopy and photoluminescence (PL) spectroscopy. In this research, morphologies, crystallization and photoluminescence of the products were influenced by the kinetics of anions, including the detection of M–O (M = Mo, W) stretching modes in the (MO4)2− tetrahedrons. Photoluminescence of PbMoO4 synthesized from Pb(NO3)2 and of PbWO4 synthesized from PbCl2 showed the strongest blue emission due to the electronic diffusion in tetrahedrons at room temperature.


2013 ◽  
Vol 12 (01) ◽  
pp. 1350003 ◽  
Author(s):  
R. VIJAYALAKSHMI ◽  
V. RAJENDRAN

Nanocrystalline BaTiO3 particles of about 20–35 nm have been successfully synthesized by using cationic, anionic and nonionic surfactants such as cetyltrimethyl ammonium bromide (CTAB), sodium dodecyl sulphate (SDS) and poly ethylene glycol (PEG) via hydrothermal method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis absorption spectroscopy and photoluminescence (PL) spectroscopy. The average particle size, measured by powder X-ray diffraction was determined to be 20–35 nm and was confirmed by transmission electron microscopy. Spherical-like morphologies were obtained by scanning electron microscopy (SEM) analysis. Optical properties of products were investigated by ultraviolet-visible (UV-Vis) absorption and PL spectroscopies.


1991 ◽  
Vol 6 (4) ◽  
pp. 712-718 ◽  
Author(s):  
A.G. Fox ◽  
S.C. Fuller ◽  
C.E. Whitman ◽  
V. Radmilovic

An x-ray diffractogram was generated from a powder sample of solution treated and ice brine quenched Al–14.25 at.% Li alloy. The Bragg reflections obtained were characteristic of a very-nearly fully ordered Al-rich L12 phase based on δ'Al3Li together with two very weak reflections associated with δAlLi. All the lines were significantly broadened due to particle size effects. The average particle size associated with the 100 L12 superlattice line was found to be 4.2 (3) nm and with the fundamental lines, 26.8 nm. A simple structure factor calculation indicated the volume fraction of ordered phase to be around 0.77, assuming that the lack of maximum order was due to the presence of disordered fcc AlLi solid solution. These results suggest that the microstructure of this as-quenched alloy comprises ordered regions of about 4 nm in size in a sea of disordered matrix with a very small amount of δAlLi present. This conclusion is in excellent agreement with recent small angle x-ray and transmission electron microscope studies on similar alloys and suggests that AlLi alloys which are ostensibly disordered at high temperatures go through a disorder-order transformation and then decompose into regions of order and disorder which are associated with a composition spinodal.


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Long Nguyen Viet

In this research, Au nanoparticles were successfully synthesized by modified polyol method with commercial precursors to be gold (III) chloride trihydrate (HAuCl4·3H2O), ethylene glycol (EG), poly(vinylpyrrolidone) (PVP), sodium borohydride (NaBH4). The structure and properties of as-prepared Au nanoparticles have been investigated by X ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis-NIR spectroscopy. As a result, Au nanoparticles with the average particle size of 28.80 nm were successfully synthesized in the range of about 50 nm. It is evidenced that the assembly of gold nanoparticles was presented in their nucleation, growth, and formation. 


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
T. D. Subash ◽  
T. Gnanasekaran ◽  
C. Divya ◽  
J. Jagannathan

Indium antimonide nanoparticles were synthesized at room temperature. X-ray diffraction measurements are utilized to characterize the nanocomposites. The InSb nanoparticle has an average particle size in a range of 47 mm to 99 mm which is observed using the XRD result. The InSb is a material which is used to design the transistor. For designing purpose the simulator TCAD is used, by which the HEMT device is structured and its performance is analyzed and it is found that transistor operates as normal devices. This designed device is more valuable since a nanocomposite InSb material is used as a channel in HEMT device, thereby leading to the nanosized HEMT device. In addition, InSb has the property of high saturation velocity and mobility which results in higher performance of the device than any other materials in III-V compounds.


Sign in / Sign up

Export Citation Format

Share Document