scholarly journals Carbapenem-resistant Pseudomonas aeruginosa originating from farm animals and people in Egypt

2019 ◽  
Vol 63 (3) ◽  
pp. 333-337 ◽  
Author(s):  
Esraa A. Elshafiee ◽  
Sara M. Nader ◽  
Sohad M. Dorgham ◽  
Dalia A. Hamza

Abstract Introduction Carbapenem-resistant Pseudomonas aeruginosa (CRPA) has become the leading cause of health care-associated infections. Treatment is difficult due to the lack of an effective antimicrobial therapy, and mortality is high. This study investigated the occurrence of CRPA in farm animals (buffaloes and cattle), livestock drinking water, and humans in Egypt. Material and Methods A total of 180 samples were examined: 50 faecal each from buffaloes and cattle, 30 of livestock drinking water, and 50 stool from humans. The samples were cultured on cetrimide agar and the plates were incubated aerobically at 37°C for 24 h. The isolates were examined for the presence of the blaKPC, blaOXA-48, and blaNDM carbapenemase-encoding genes using PCR and investigated for the exotoxin A (toxA) gene. The toxA gene from carbapenem- group resistant isolates was phylogenetically analysed. Results P. aeruginosa was isolated from buffaloes, cattle, drinking water, and humans, with occurrences of 40%, 34%, 10%, and 20%, respectively. Carbapenem resistance genes were found in 60%, 59%, 67%, and 70% in buffalo, cattle, water and human samples, respectively. The toxA gene was detected in 80% of samples. The phylogenetic analysis showed that cattle and water sequences were in one cluster and more related to each other than to human isolates. Conclusion Occurrence of CRPA among farm animals, drinking water, and humans was high, reflecting the environmental origin of P. aeruginosa and highlighting contaminated water as a potential transmitter of CRPA to livestock and next to humans.

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 241
Author(s):  
Tomasz Bogiel ◽  
Dagmara Depka ◽  
Mateusz Rzepka ◽  
Joanna Kwiecińska-Piróg ◽  
Eugenia Gospodarek-Komkowska

Pseudomonas aeruginosa is one of the most commonly isolated bacteria from clinical specimens, with an increasing isolation frequency in nosocomial outbreaks. The hypothesis tested was whether carbapenem-resistant P. aeruginosa strains display an altered carriage of the virulence factor genes, depending on the type of carbapenem resistance. The aim of the study was to investigate, by PCR, the frequency of 10 chosen virulence factors genes (phzM, phzS, exoT, exoY, exoU, toxA, exoS, algD, pilA and pilB) and the genotype distribution in 107 non-duplicated carbapenem-resistant P. aeruginosa isolates. P. aeruginosa genes involved in phenazine dyes and exoenzyme T synthesis were noted with the highest frequency (100%). Fimbriae-encoding genes were detected with the lowest incidence: 15.9% and 4.7% for pilin A and B, respectively. The differences observed between the exoS gene prevalence amongst the carbapenemase-positive and the carbapenemase-negative strains and the pilA gene prevalence amongst the strains of different origins were statistically significant. Virulence genes’ prevalence and the genotype distribution vary amongst P. aeruginosa strains resistant to carbapenems, especially in terms of their carbapenemase synthesis ability and the strain origin.


2016 ◽  
Vol 24 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Luminița Matroș ◽  
Tibor Ludovic Krausz ◽  
Stanca Lucia Pandrea ◽  
Monica Ioana Ciontea ◽  
Erica Chiorean ◽  
...  

Abstract Introduction: Nosocomial infections caused by Pseudomonas aeruginosa producing carbapenemases represent an important cause of morbidity and mortality among immunosuppressed patients. The aim of our study was to detect the production of metallo-carbapenemases (MBLs) by phenotypic methods and to detect the presence of the MBLs encoding genes (blaIMP and blaVIM) by PCR in P. aeruginosa strains isolated from hospitalized patients to the Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca. Material and methods: Between September 2014-February 2015, we tested thirty-eight P. aeruginosa strains resistant to carbapenems according to CLSI 2014 breakpoints, determined by Vitek®2(BioMérieux),isolated from various clinical specimens. Phenotypic detection of the MBLs production was performed using the KPC/MBL Confirmation kit (ROSCO®) and the MBL Etest® IP/IPI (BioMérieux). We used the PCR method for detecting MBLs encoding genes: blaIMP, blaVIM. Results: The strains were obtained from surgery (55.3%), ICU (15.8%) and gastroenterology wards (28.9%), isolated from pus (25.8%), tracheal secretion (22.7%), bile (13.6%), sputum (10.6%), blood (10.6%), other secretions (16.7%). These strains were resistant to multiple classes of antibiotics. By ROSCO® method 28/38 strains (73.7%) were positive with imipenem ± dipicolinic acid (DPA) and 22/38 (57.9%) with meropenem ± DPA. Etest® waspositive for the 28/38 strains (73.7%). 11 strains (28.9%) were positive for KPC with the screening method. We identified: 6 blaIMP+ (15.8%), 2 (5.3%) blaVIM+ and 4 blaIMP+/blaVIM+ strains (10.5%). Conclusion: Both genes encoding MBL were found, alone or in combination. The increasing level of carbapenem resistance of these strains impose their routine testing to detect MBL.


2014 ◽  
Vol 87 (4) ◽  
pp. 235-241
Author(s):  
Mihaela Ileana Ionescu ◽  
Dan Stefan Neagoe ◽  
Claudia Chiorean ◽  
Loredana Dumitras ◽  
Aurelia Rus

Aim. Carbapenem-resistant strains have been increasingly reported over the last few years. In this study  we used laboratory records to determine the occurrence of carbapenem-resistant strains from hospitalized patients with emphasis on the comparative analysis of the incidence in various health-care settings. Materials and methods. From January 2012 to November 2012 and from May 2013 to November 2013, we evaluated 566 strains (Acinetobacter spp., Pseudomonas aeruginosa, Escherichia coli, and Klebsiella spp.). All isolates were tested and analyzed according to their antibiotic resistance phenotypic pattern. Laboratory results were correlated with data regarding admission in different clinical wards.Results. Among 566 isolates, 191 carbapenem-resistant or carbapenem-intermediate strains (33.74%) were detected. Non-fermentative species were the most prevalent carbapenem-resistant organisms, 80.62% of 191 carbapenem-resistant or carbapenem-intermediate strains isolated were Acinetobacter spp., and 17.27% of 191 were Pseudomonas aeruginosa. Apart from that, only 4 (2.09%) carbapenem-resistant Enterobacteriaceae (CRE) strains were identified. We identified 59.30% of 172 strains isolated from patients hospitalized in anesthesia and intensive care units non-susceptible to carbapenems. The main mechanism associated with carbapenem resistance could be the production of carbapenemase in combination with impermeability.Conclusions. Our study demonstrates that infections with carbapenem-resistant strains are correlated with hospitalization in intensive care units. Our data showed a predominant carbapenem-resistant Acinetobacter spp. strain in intensive care units.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eun-Jeong Yoon ◽  
Seok Hoon Jeong

Carbapenem-resistantPseudomonas aeruginosais one of the major concerns in clinical settings impelling a great challenge to antimicrobial therapy for patients with infections caused by the pathogen. While membrane permeability, together with derepression of the intrinsic beta-lactamase gene, is the global prevailing mechanism of carbapenem resistance inP. aeruginosa, the acquired genes for carbapenemases need special attention because horizontal gene transfer through mobile genetic elements, such as integrons, transposons, plasmids, and integrative and conjugative elements, could accelerate the dissemination of the carbapenem-resistantP. aeruginosa. This review aimed to illustrate epidemiologically the carbapenem resistance inP. aeruginosa, including the resistance rates worldwide and the carbapenemase-encoding genes along with the mobile genetic elements responsible for the horizontal dissemination of the drug resistance determinants. Moreover, the modular mobile elements including the carbapenemase-encoding gene, also known as theP. aeruginosaresistance islands, are scrutinized mostly for their structures.


mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Yanyan Hu ◽  
Congcong Liu ◽  
Qi Wang ◽  
Yu Zeng ◽  
Qiaoling Sun ◽  
...  

ABSTRACT Pseudomonas aeruginosa is a major opportunistic pathogen and one of the leading bacterial species causing health care-associated infections. Carbapenems are the most effective antimicrobial agents for the treatment of severe infections caused by P. aeruginosa. However, our recent surveillance demonstrated that the prevalence of carbapenem-resistant P. aeruginosa (CRPA) reached 38.67% in Zhejiang, China. By analyzing CRPA isolates collected from patients from 2006 to 2018, we found that 33% of CRPA isolates carried the gene blaKPC-2, which conferred high-level resistance to carbapenems and other β-lactams. In particular, a CRPA clone, ST463 (sequence type 463), emerged and has become the predominant CRPA clone among the population. Genome sequencing demonstrated that ST463 expansion was associated with plasmid-borne blaKPC-2. The mobile element flanking blaKPC-2, the type IV secretion system, and the successful expansion of clone ST463 might have further favored blaKPC-2 spread in P. aeruginosa. Molecular clock analysis dated the emergence of clone ST463 to around 2007. Genome-wide association analysis showed that 567 genes were associated with clone ST463, including several known virulence genes related to the biosynthesis of lipooligosaccharide (LOS) O-antigens and exotoxin. These findings indicate that ST463 is expanding with plasmid-borne blaKPC-2 and virulence-related genes in nosocomial infections, and close surveillance should be undertaken in the future. IMPORTANCE Health care-associated infections, also known as nosocomial infections, are the most frequent adverse events in health care delivery worldwide, causing high rates of morbidity and mortality and high health care costs. Pseudomonas aeruginosa is one of the leading bacterial species causing health care-associated infections. Carbapenems are the most effective antimicrobial agents for the treatment of its severe infections. However, the prevalence of carbapenem-resistant P. aeruginosa (CRPA) has been increasing rapidly in recent years, and our surveillance demonstrated that the prevalence of CRPA reached 38.67% in Zhejiang, China. Genome sequencing of CRPA isolates over a decade showed that a CRPA clone (ST463) emerged recently. The clone is highly resistant to β-lactams, including carbapenems, and fluoroquinolones. Genome-wide association analysis showed that the clone expanded with virulence-related genes and the plasmid-borne carbapenem-resistant gene blaKPC-2. These findings are of significant public health importance, as the information will facilitate the control and minimization of CRPA nosocomial infections.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Wang ◽  
Xiaoya Wang

AbstractBackgroundPseudomonas aeruginosa is an opportunistic pathogen which is associated with nosocomial infections and causes various diseases including urinary tract infection, pneumonia, soft-tissue infection and sepsis. The emergence of P. aeruginosa-acquired metallo-β-lactamase (MBL) is most worrisome and poses a serious threat during treatment and infection control. The objective of this study was to identify antibiotic susceptibility, phenotypic detection of MBL production and to determine the prevalence of MBL genes in carbapenem-resistant P. aeruginosa isolated from different clinical samples.MethodsA total of 329 non-duplicate P. aeruginosa isolated from various clinical samples from two hospitals in China between September 2017 and March 2019 were included in this study. Phenotypic detection of MBL was performed by the combined detection method using imipenem and imipenem-ethylenediaminetetraacetic acid (EDTA) discs. MBL-encoding genes including blaVIM-1, blaVIM-2, blaIMP-1, blaIMP-2, blaSPM-1, blaSIM, blaNDM-1 and blaGIM were detected by polymerase chain reaction (PCR).ResultsOf the 329 P. aeruginosa, majority of the isolates were resistant to imipenem (77.5%) followed by meropenem (64.7%). Of the 270 P. aeruginosa isolates tested, 149 (55.2%) isolates were found to be positive for MBL detection. Of the different samples, 57.8% (n = 26) of P. aeruginosa isolated from blood were found to be positive for MBL production. Of the various MBL genes, blaIMP-1 (28.2%) was the most predominant gene detected followed by blaVIM-2 (18.8%), blaVIM-1 (16.1%), blaNDM-1 (9.4%), blaIMP-2 (6.7%), blaSIM (6.0%), blaSPM-1 (4.0%) and blaGIM (1.3%) genes.ConclusionsThe high resistance of P. aeruginosa toward imipenem and meropenem and the high prevalence of blaIMP-1 and blaVIM-2 set the alarm on the increasing, perhaps the increased, carbapenem resistance. In addition to routine antibiotic susceptibility testings, our results emphasize the importance of both the phenotypic and genotypic MBL detection methods in routine practice for early detection of carbapenem resistance and to prevent further dissemination of this resistant pathogen.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elvira Garza-González ◽  
Paola Bocanegra-Ibarias ◽  
Eduardo Rodríguez-Noriega ◽  
Esteban González-Díaz ◽  
Jesús Silva-Sanchez ◽  
...  

Abstract Background This study aimed to determine the epidemiological, microbiological, and molecular characteristics of an outbreak of carbapenem-resistant Leclercia adecarboxylata in three hospitals associated with the unintended use of contaminated total parental nutrition (TPN). Methods For 10 days, 25 patients who received intravenous TPN from the same batch of a formula developed sepsis and had blood cultures positive for L. adecarboxylata. Antimicrobial susceptibility and carbapenemase production were performed in 31 isolates, including one from an unopened bottle of TPN. Carbapenemase-encoding genes, extended-spectrum β-lactamase–encoding genes were screened by PCR, and plasmid profiles were determined. Horizontal transfer of carbapenem resistance was performed by solid mating. Clonal diversity was performed by pulsed-field gel electrophoresis. The resistome was explored by whole-genome sequencing on two selected strains, and comparative genomics was performed using Roary. Results All 31 isolates were resistant to aztreonam, cephalosporins, carbapenems, trimethoprim/sulfamethoxazole, and susceptible to gentamicin, tetracycline, and colistin. Lower susceptibility to levofloxacin (51.6%) and ciprofloxacin (22.6%) was observed. All the isolates were carbapenemase producers and positive for blaNDM-1, blaTEM-1B, and blaSHV-12 genes. One main lineage was detected (clone A, 83.9%; A1, 12.9%; A2, 3.2%). The blaNDM-1 gene is embedded in a Tn125-like element. Genome analysis showed genes encoding resistance for aminoglycosides, quinolones, trimethoprim, colistin, phenicols, and sulphonamides and the presence of IncFII (Yp), IncHI2, and IncHI2A incompatibility groups. Comparative genomics showed a major phylogenetic relationship among L. adecarboxylata I1 and USDA-ARS-USMARC-60222 genomes, followed by our two selected strains. Conclusion We present epidemiological, microbiological, and molecular evidence of an outbreak of carbapenem-resistant L. adecarboxylata in three hospitals in western Mexico associated with the use of contaminated TPN.


2013 ◽  
Vol 57 (8) ◽  
pp. 3775-3782 ◽  
Author(s):  
Jianhui Xiong ◽  
David C. Alexander ◽  
Jennifer H. Ma ◽  
Maxime Déraspe ◽  
Donald E. Low ◽  
...  

ABSTRACTPseudomonas aeruginosa96 (PA96) was isolated during a multicenter surveillance study in Guangzhou, China, in 2000. Whole-genome sequencing of this outbreak strain facilitated analysis of its IncP-2 carbapenem-resistant plasmid, pOZ176. The plasmid had a length of 500,839 bp and an average percent G+C content of 57%. Of the 618 predicted open reading frames, 65% encode hypothetical proteins. The pOZ176 backbone is not closely related to any plasmids thus far sequenced, but some similarity to pQBR103 ofPseudomonas fluorescensSBW25 was observed. Two multiresistant class 1 integrons and several insertion sequences were identified. TheblaIMP-9-carrying integron containedaacA4→blaIMP-9→aacA4, flanked upstream by Tn21 tnpMRAand downstream by a completetnioperon of Tn402and amermodule, named Tn6016. The second integron carriedaacA4→catB8a→blaOXA-10and was flanked by Tn1403-liketnpRAand asul1-type 3′ conserved sequence (3′-CS), named Tn6217. Other features include three resistance genes similar to those of Tn5, a tellurite resistance operon, and twopiloperons. The replication and maintenance systems exhibit similarity to a genomic island ofRalstonia solanacearumGM1000. Codon usage analysis suggests the recent acquisition ofblaIMP-9. The origins of the integrons on pOZ176 indicated separate horizontal gene transfer events driven by antibiotic selection. The novel mosaic structure of pOZ176 suggests that it is derived from environmental bacteria.


2020 ◽  
Vol 25 (3) ◽  
pp. 301-307
Author(s):  
M. Duygu Aksoy ◽  
H. Murat Tuğrul

Introduction: Carbapenem resistant Pseudomonas aeruginosa strains cause serious problems in treatment. A large number of identified metallo-beta-lactamase (MBL) enzymes produced by P. aeruginosa are one of the most important mechanisms in resistance to carbapenems. MBL genes are located on the chromosome or plasmid, and they can easily spread between different bacterial strains. The activities of these enzymes are zinc-dependent, and they are inhibited by ethylenediaminetetraacetic acid (EDTA). Therefore, this advantage is used in MBL identification tests. In this study, it was aimed to determine MBL among P. aeruginosa strains. Materials and Methods: MBL existence was investigated in 35 P. aeruginosa strains accepted to be mildly susceptible/resistant to any of the carbapenem group of antibiotics through phenotypic and genotypic methods. Phenotypic tests were performed as double disk synergy test (DDST), combined disk diffusion tests (CDDT) by using 0.1 M and 0.5 M EDTA, MBL E-test, and modified Hodge test (MHT). blaIMP, blaVIM, blaGIM, blaSIM, blaSPM genes and blaNDM gene were investigated by multiplex polimerase chain reaction (PCR) and PCR, respectively. Escherichia coli ATCC 25922 and P. aeruginosa ATCC 27853 standard bacteria were used in tests. VIM-1, VIM-2, IMP-13, SPM-1, NDM-1 type MBL-producing P. aeruginosa strains were used as positive controls. Results: Among the carbapenems resistant P. aeruginosa isolates, positivity of MBL was found as 54.2% by MBL E-test, 42.8% by DDST, 94.2% and 37.1% by CDDT method using 0.5 M and 0.1 M EDTA, respectively. Modified Hodge test and genotypic method did not detect MBL. Conclusion: In order to correctly evaluate the results of the phenotypic method, the investigation of resistance genes by molecular methods is also required. The most common metallo-beta-lactamase enzymes responsible for resistance to carbapenem in Pseudomonas were not observed. It was thought that different mechanisms might be responsible for the identified carbapenem resistance.


2019 ◽  
Vol 11 (02) ◽  
pp. 138-143 ◽  
Author(s):  
Ronni Mol Joji ◽  
Nouf Al-Rashed ◽  
Nermin Kamal Saeed ◽  
Khalid Mubarak Bindayna

Abstract INTRODUCTION: Carbapenem-resistant Pseudomonas aeruginosa has emerged as a life-threatening infectious agent worldwide. Carbapenemase genes are reported to be some of the most common mechanisms for carbapenem resistance in P. aeruginosa. No reports are available from the Kingdom of Bahrain about carbapenem resistance and the underlying cause. In this study, we determined to study the presence of the metallo-beta-lactamase (M β L) genes of VIM family and NDM-1 in carbapenem-resistant P. aeruginosa strains. METHODOLOGY: Fifty carbapenem-resistant P. aeruginosa isolates were obtained from three main hospitals of Bahrain. They were subjected to antimicrobial susceptibility testing by disc diffusion test. Subsequently, MβL was detected by imipenem-ethylene diamine tetraacetic acid (EDTA) combined disc test and conventional polymerase chain reaction. RESULTS: Among 50 P. aeruginosa strains, 40 (80%) were imipenem resistant. Among the 40 imipenem-resistant strains, 35 (87.5%) strains were positive for the imipenem-EDTA combined disc test, and 21 (52%) were carrying MβL genes. Nineteen (47.5%) strains were positive for the VIM gene; one (2.5%) strain was carrying the NDM-1 gene, while one strain was carrying both the VIM and NDM-1 genes. None of the imipenem sensitive strains carried the VIM or NDM-1 gene. CONCLUSION: This is the first study to report the presence of the VIM family gene and NDM-1 genes in imipenem-resistant P. aeruginosa isolates in the Kingdom of Bahrain. The study also confirms the multiple drug resistance by the MβL strains, attention should therefore from now on, be focused on prevention of further spread of such isolates by firm infection control measures, and to reduce its threat to public health.


Sign in / Sign up

Export Citation Format

Share Document