scholarly journals Embryo transfer as an option to improve fertility in repeat breeder dairy cows

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arkadiusz Nowicki

Abstract Repeat breeding is a serious reproductive disorder in dairy cattle. The causes of repeat breeding are multifactorial and there are two main mechanisms: failure of fertilisation or early embryo death, mainly due to poor quality of oocytes and an inadequate uterine environment. Many methods have been used to increase the pregnancy rate for repeat breeder cows, such as intrauterine infusion of antibacterial agents or antibiotics, hormonal treatments for oestrus synchronisation and induction of ovulation, and progesterone supplementation or induction of accessory corpus luteum; however, the results were inconsistent between studies. Embryo transfer (ET) has the capability to minimalise the effects of poor oocyte quality and unfavourable uterine environments on early embryo development during the first seven days after ovulation in repeat breeder cows, and several studies showed that ET significantly improved the pregnancy rate in this group of animals. Thus, ET can be considered an option to increase the conception rate in repeat breeder dairy cows.

2007 ◽  
Vol 53 (6) ◽  
pp. 1313-1318 ◽  
Author(s):  
Dong-Soo SON ◽  
Chang-Yong CHOE ◽  
Sang-Rae CHO ◽  
Sun-Ho CHOI ◽  
Hyun-Jong KIM ◽  
...  

2020 ◽  
pp. 47-50
Author(s):  
N. V. Saraeva ◽  
N. V. Spiridonova ◽  
M. T. Tugushev ◽  
O. V. Shurygina ◽  
A. I. Sinitsyna

In order to increase the pregnancy rate in the assisted reproductive technology, the selection of one embryo with the highest implantation potential it is very important. Time-lapse microscopy (TLM) is a tool for selecting quality embryos for transfer. This study aimed to assess the benefits of single-embryo transfer of autologous oocytes performed on day 5 of embryo incubation in a TLM-equipped system in IVF and ICSI programs. Single-embryo transfer following incubation in a TLM-equipped incubator was performed in 282 patients, who formed the main group; the control group consisted of 461 patients undergoing single-embryo transfer following a traditional culture and embryo selection procedure. We assessed the quality of transferred embryos, the rates of clinical pregnancy and delivery. The groups did not differ in the ratio of IVF and ICSI cycles, average age, and infertility factor. The proportion of excellent quality embryos for transfer was 77.0% in the main group and 65.1% in the control group (p = 0.001). In the subgroup with receiving eight and less oocytes we noted the tendency of receiving more quality embryos in the main group (р = 0.052). In the subgroup of nine and more oocytes the quality of the transferred embryos did not differ between two groups. The clinical pregnancy rate was 60.2% in the main group and 52.9% in the control group (p = 0.057). The delivery rate was 45.0% in the main group and 39.9% in the control group (p > 0.050).


2008 ◽  
Vol 91 (5) ◽  
pp. 1786-1790 ◽  
Author(s):  
H.V. Petit ◽  
F.B. Cavalieri ◽  
G.T.D. Santos ◽  
J. Morgan ◽  
P. Sharpe
Keyword(s):  

2015 ◽  
Vol 27 (1) ◽  
pp. 143
Author(s):  
F. Randi ◽  
B. Fernandez ◽  
M. McDonald ◽  
C. Johnson ◽  
N. Forde ◽  
...  

Maternal progesterone (P4) regulates early conceptus growth and development in ruminants. Early embryo transfer studies in sheep and cattle demonstrated a need for close synchrony between the embryo and the uterine environment of the recipient. However, manipulating P4 may be one way of strategically regulating the temporal changes that normally occur in the uterine environment in order to allow flexibility in the timing of embryo transfer. For example, previous studies have demonstrated that P4 administration during the first few days of the oestrous cycle facilitates pregnancy establishment with older embryos. The aim of this study was to examine the effect of embryo-uterine synchrony on conceptus elongation in cattle. Oestrous cycles of crossbred beef heifers were synchronised using an 8-day P4-Releasing Intravaginal Device (PRID Delta®, CEVA, Mountain View, CA, USA) with administration of a prostaglandin F2α analogue (Enzaprost®, CEVA; 5 mL equivalent to 25 mg of dinoprost) given on the day before PRID removal. Heifers were checked for signs of oestrus 4 times per day commencing 30 h after PRID withdrawal. Only those seen in standing oestrus (n = 50) were randomly assigned to 1 of 5 treatment groups to receive Day 7 in vitro-produced blastocysts (n = 10 per recipient) (1) on Day 5 post-oestrus; (2) on Day 5, with P4 supplementation via PRID from Day 3 to 5 + 750 IU of eCG at PRID insertion; (3) on Day 5, PRID Delta from Day 3 to 5 plus 3000 IU of hCG at PRID insertion; (4) on Day 7, or (5) on Day 9. At embryo age Day 14, all heifers were slaughtered and the uterus was flushed to recover and measure conceptuses. Data are summarised in Table 1. Fewer recipients yielded conceptuses (P < 0.05) and fewer conceptuses overall were recovered (P < 0.05) following transfer on Day 5 compared with Day 7 or Day 9. Supplementation with P4 resulted in short cycles (evidenced by corpus luteum regression and/or a recent ovulation at slaughter) in 33.3 to 54.5% of recipients receiving embryos on Day 5. Mean conceptus length was greater (P < 0.05) following transfer to an advanced uterus. In conclusion, transfer of embryos to a retarded (Day 5) uterine environment results in poor embryo survival. Supplementation with P4 shortened the interoestrous period in a significant number of heifers. Transfer to an advanced uterine environment promotes conceptus elongation, presumably driven by P4. Table 1.Embryo survival and conceptus length data


2001 ◽  
Vol 26 (2) ◽  
pp. 367-370 ◽  
Author(s):  
V.P. Gath ◽  
J. Fahey ◽  
S.E.M. Snijders ◽  
D. O'Callaghan

AbstractPlasma urea concentrations have been used as a diagnostic tool in the investigation of reproductive performance in cattle. Data were compiled from three recent studies on bovine fertility and a retrospective comparison of plasma urea concentrations was made between those animals that conceived to an insemination or embryo transfer. In studies I and 2 plasma urea concentrations around the time of insemination were determined. Pregnancies were diagnosed using ultrasonography 35 days later. There was no significant difference between the mean plasma urea concentrations around the time of insemination in the cattle subsequently diagnosed pregnant or not pregnant. In study 3, in vitro produced good quality embryos were transferred into three groups of beef heifers. The three groups were allocated to diets of high energy / high urea, high energy / no urea and low energy / high urea. The plasma urea concentrations at the time of embryo transfer were different between the three groups. However, the pregnancy rates 28 days post transfer, were not significantly different between the three groups. This suggests that the previously reported effects of high protein diets on fertility are not solely due to disruptive effects on the uterine environment. The main effect of urea on fertility may be on oocyte development within the follicle. Overall, these results indicate that measurement of plasma urea concentrations in individual animals around the time of insemination or embryo transfer is not a useful predictor of subsequent pregnancy rate.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1132 ◽  
Author(s):  
Yan-Li Sun ◽  
Shou-Bin Tang ◽  
Wei Shen ◽  
Shen Yin ◽  
Qing-Yuan Sun

After ovulation, mammalian oocytes will undergo a time-dependent process of aging if they are not fertilized. This postovulatory aging (POA) seriously affects the oocyte quality and then impairs the subsequent fertilization and early embryo development, which should be avoided especially in assisted reproductive technology (ART). Resveratrol is an antioxidant substance that can scavenge free radicals and is effective in improving ovary functions. Here, mouse oocytes were used to investigate the effects and mechanisms of resveratrol on POA oocytes in vitro. With 1.0 µM resveratrol treatment during aging process, the rates of fertilization and blastocyst in POA oocytes increased significantly compared with those in the POA group. Resveratrol can reduce the loss of sperm binding sites by stabilizing Juno. Resveratrol can maintain the normal morphology of spindle and mitochondrion distribution and alleviate the levels of ROS and early apoptosis. Additionally, resveratrol can reduce the changes of H3K9me2. Therefore, resveratrol can significantly improve the quality of POA oocytes in vitro to enhance the rates of fertilization and blastocyst, which may be very helpful during the ART process.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yonghui Jiang ◽  
Huangcong Shi ◽  
Yue Liu ◽  
Shigang Zhao ◽  
Han Zhao

Oxidative stress has been recognized as one of the causal mediators of female infertility by affecting the oocyte quality and early embryo development. Improving oxidative stress is essential for reproductive health. Melatonin, a self-secreted antioxidant, has a wide range of effects by improving mitochondrial function and reducing the damage of reactive oxygen species (ROS). This minireview illustrates the applications of melatonin in reproduction from four aspects: physiological ovarian aging, vitrification freezing, in vitro maturation (IVM), and oxidative stress homeostasis imbalance associated with polycystic ovary syndrome (PCOS), emphasising the role of melatonin in improving the quality of oocytes in assisted reproduction and other adverse conditions.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Wenjie Wang ◽  
Jiali Cai ◽  
Lanlan Liu ◽  
Yingpei Xu ◽  
Zhenfang Liu ◽  
...  

Abstract Background While single embryo transfer (SET) is widely advocated, double embryo transfer (DET) remains preferable in clinical practice to improve IVF success rate, especially in poor prognosis patients with only poor quality embryos (PQEs) available in addition to one or no good quality embryos (GQEs). Furthermore, previous studies suggest PQE might adversely affect the implantation of a GQE when transferred together. This study aims to evaluate the effect of transferring an additional PQE with a GQE on the outcomes in poor prognosis patients. Methods A total of 5037 frozen-thawed blastocyst transfer (FBT) cycles between January 2012 and May 2019 were included. Propensity score matching was applied to control for potential confounders, and we used generalized estimating equations (GEE) models to identify the association between the effect of an additional PQE and the outcomes. Results Overall, transferring a PQE with GQE (Group GP) achieved significantly higher pregnancy rate (PR), live birth rate (LBR) and multiple pregnancy rate (MPR) than GQE only (group G). The addition of a PQE increased LBR in patients aged 35 and over and in patients who received over 3 cycles of embryo transfer (ET) (48.1% vs 27.2%, OR:2.56, 95% CI: 1.3–5.03 and 46.6% vs 35.4%, OR:1.6, 95% CI: 1.09–2.35), but not in women under 35 and in women who received less than 3 cycles of ET (48.7% vs 43.9%, OR:1.22, 95% CI: 0.93–1.59 and 48.3% vs 41.4%, OR:1.33, 95% CI: 0.96–1.85). Group GP resulted in significantly higher MPR than group G irrespective of age and the number of previous IVF cycles. Conclusions An additional PQE does not negatively affect the implantation potential of the co-transferred GQE. Nevertheless, the addition of a PQE contributes to both live birth and multiple birth in poor prognosis patients. Physicians should still balance the benefits and risks of DET.


2006 ◽  
Vol 18 (2) ◽  
pp. 202 ◽  
Author(s):  
O. Dochi ◽  
M. Tanisawa ◽  
S. Goda ◽  
H. Koyama

Repeat-breeding is one of the important factors that affect dairy management. The objective of this study was to investigate the effect of transfer of frozen–thawed IVF embryos on pregnancy in repeat-breeder Holstein cattle. Cumulus–oocyte complexes (COCs) were collected by aspiration of 2–1-mm follicles from ovaries obtained at a local abattoir. COCs were matured for 20 h in TCM-199 supplemented with 5% calf serum (CS) and 0.02 mg/mL of FSH at 38.5°C under a 5% CO2 atmosphere in air. Matured oocytes were inseminated with spermatozoa of 5 × 106/mL in BO solution (Brackett and Oliphant 1975 Biol. Reprod. 12, 260–274) containing 10 mM hypotaurine and 4 units/mL heparin. After 18 h of gamete co-culture, presumptive zygotes were cultured in CR1aa (Rosenkrans et al. 1991 Theriogenology 35, 266) supplemented with 5% CS for 8 days at 38.5°C under 5% CO2, 5% O2, 90% N2 atmosphere in air. After in vitro fertilization, Day 7 and Day 8 blastocysts were frozen in 1.5 M ethylene glycol (EG) in Dulbecco's PBS (DPBS) supplemented with 0.1 M sucrose and 20% CS. Embryos were transferred into a freezing medium, loaded into 0.25-mL straws, and allowed to stand for 15–20 min for equilibration. The straws were then plunged into a −7°C methanol bath of a programmable freezer for 1 min, seeded at −7°C, maintained at −7°C for 15 min, cooled to −30°C at the rate of −0.3°C/min, and then plunged into liquid nitrogen. Recipient animals (43 heifers, 131 cows) included those that did not conceive after being artificially inseminated (AI) 3 to 15 times. The frozen–thawed IVF embryos were directly transferred to the recipient animals 7 days after estrus or AI. Pregnancy rates were analyzed by chi-square test. The results are presented in Table 1. There were no significant differences in the pregnancy rates between treatments. However, a slightly higher pregnancy rate was achieved by embryo transfer after AI. These results suggest that embryo transfer may increase the pregnancy rate in repeat-breeder Holstein cattle. Table 1. Pregnancy rates after transfer of IVF frozen–thawed embryos in repeat-breeder Holstein cattle


Sign in / Sign up

Export Citation Format

Share Document