scholarly journals Influence of Cruise Control Use on Vehicle´s Consumption

2021 ◽  
Vol 12 (1) ◽  
pp. 13-24
Author(s):  
Michal Loman ◽  
Branislav Šarkan ◽  
Tomáš Skrúcaný

Abstract Most vehicles used in road transport are powered by internal combustion engines. Depending on the nature of their operation, each vehicle releases a certain amount of emissions into the air. Among other things, emissions include carbon dioxide, which significantly contributes to the greenhouse effect. The quantity of CO2 produced is closely related to fuel consumption. The article presents the results of test drives which were performed on a passenger car meeting emission standard Euro 4. The aim of the study was to verify the impact of the use of cruise control on fuel consumption of the vehicle. The measurement was performed on the basis of test drives carried out on a highway section. The consumption was determined based on the data obtained from a diagnostic device, which was connected to the vehicle via OBD. The test drives were repeated several times in order to get as close as possible to the actual operation of the vehicle.

2020 ◽  
Vol 91 (4) ◽  
pp. 49-58
Author(s):  
I. V. Bryhadyr ◽  
I. V. Panova

The role of legislation and state policy in minimizing the impact of threats to environmental safety in the field of automobile transport has been studied. The main directions of the development of state policy and legislation in the field of reducing the negative impact of motor vehicles on the environment and public health have been defined. The main problems of reducing the negative impact of motor vehicles on the environment and public health, as well as the development of state and legal mechanisms to overcome them have been determined. The main environmental problems faced by governments are the use of internal combustion engines and fuel quality indicators. Many EU countries are refusing to further impose more strict requirements on the operation of motor fuel engines, instead introducing mechanisms to completely abandon such vehicle propulsion systems. However, such a refusal raises another problem of greening of road transport – the problem of electrification of transport, in the process of which it is necessary to solve the problems of transport energy and disposal of used batteries of electric vehicles. The authors have emphasized on inexpediency that to be limited in the long run only to mechanisms for setting more strict emission requirements for cars. The authors have indicated the need for a comprehensive approach to solving environmental problems to prevent the emergence of new significant difficulties – the accumulation of used batteries of electric cars, the depletion of non-renewable resources for their manufacture, etc. It has been offered to join Ukraine to the pan-European initiative of electrification of road transport, to develop the state program for the transformation of the motor transport industry with clear deadlines for the introduction of restrictions on the use of internal combustion engines, to introduce mechanisms to financially stimulate the transition from internal combustion engines to electric combustion engines.


2021 ◽  
Vol 1 (142) ◽  
pp. 34-44
Author(s):  
Dmitriy Zhdanko ◽  
◽  
Valeriy Gerasimov ◽  
Mikhail Kostomakhin ◽  
Nikolay Petrishchev ◽  
...  

Service and repair of operating and servicing organizations are largely equipped with outdated, low-power, highly specialized bench equipment from former specialized enterprises and do not always meet the technical requirements of the manufacturer, especially for conducting quality control programs for the repair of powerful and modern tractors. These circumstances together reduce the reliability of the obtained diagnostic parameters and may lead to the risk of errors in determining the technical readiness of the repaired equipment, in particular, internal combustion engines, transmission units and chassis, hydraulic drive. (Research purpose) The research purpose is in developing a mobile control and diagnostic device for monitoring the power and fuel consumption of the internal combustion engine, as well as the quality of repair of hydrostatic transmission and hydraulic drive units. (Materials and methods) The article presents an analysis of scientific works on improving methods for diagnosing energy indicators of mobile agricultural machinery, as well as conducted extensive research on the use of axial plunger pumps and throttling the flow of liquid injected by them with a constant and variable cross-section throttle for engine braking. (Results and discussion) Authors developed an experimental model of a mobile control and diagnostic device and experimentally tested the methods for determining its parameters and control and diagnostic operations. (Conclusions) The use of the proposed mobile control and diagnostic device will eliminate excessive fuel consumption by tractors when reducing the effective power of their internal combustion engines below the permissible limits, and will also allow the diagnosis of hydrostatic transmission units in the conditions of agricultural and service enterprises and exclude the sending of serviceable units with unused resources for repair.


2014 ◽  
Vol 159 (4) ◽  
pp. 12-25
Author(s):  
Ireneusz Pielecha ◽  
Wojciech Cieślik ◽  
Przemysław Borowski ◽  
Jakub Czajka ◽  
Wojciech Bueschke

The article presents the possibility of reduction of the CO2 emission due to application of downsizing, resulting also in the reduction in fuel consumption by engines. From 2015, carbon dioxide emissions will be limited to 130 g/km. Due to this there has been observed an increase in the number of three-cylinder combustion engines on the offer of most global automotive companies. In the article are presented selected new designs of three-cylinder engines, with focus on their performance parameters. The static and dynamic downsizing has been defined as the contemporary direction of the development of combustion engines. In the article are also suggested indexes of static and dynamic downsizing and their interdependency for the considered combustion engines.


Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7492
Author(s):  
Vincent Berthome ◽  
David Chalet ◽  
Jean-François Hetet

Particulate emission from internal combustion engines is a complex phenomenon that needs to be understood in order to identify its main factors. To this end, it appears necessary to study the impact of unburned gases, called blow-by gases, which are reinjected into the engine intake system. A series of transient tests demonstrate their significant contribution since the particle emissions of spark-ignition engines are 1.5 times higher than those of an engine without blow-by with a standard deviation 1.5 times greater. After analysis, it is found that the decanter is not effective enough to remove completely the oil from the gases. Tests without blow-by gases also have the advantage of having a lower disparity, and therefore of being more repeatable. It appears that the position of the “endgap” formed by the first two rings has a significant impact on the amount of oil transported towards the combustion chamber by the backflow, and consequently on the variation of particle emissions. For this engine and for this transient, 57% of the particulate emissions are related to the equivalence ratio, while 31% are directly related to the ability of the decanter to remove the oil of the blowby gases and 12% of the emissions come from the backflow. The novelty of this work is to relate the particles fluctuation to the position of the endgap ring.


2019 ◽  
Vol 26 (3) ◽  
pp. 31-38
Author(s):  
Wojciech Gis ◽  
Maciej Gis ◽  
Piotr Wiśniowski ◽  
Mateusz Bednarski

Abstract Limiting emissions of harmful substances is a key task for vehicle manufacturers. Excessive emissions have a negative impact not only on the environment, but also on human life. A significant problem is the emission of nitrogen oxides as well as solid particles, in particular those up to a diameter of 2.5 microns. Carbon dioxide emissions are also a problem. Therefore, work is underway on the use of alternative fuels to power the vehicle engines. The importance of alternative fuels applies to spark ignition engines. The authors of the article have done simulation tests of the Renault K4M 1.6 16v traction engine for emissions for fuels with a volumetric concentration of bioethanol from 10 to 85 percent. The analysis was carried out for mixtures as substitute fuels – without doing any structural changes in the engine's crankshafts. Emission of carbon monoxide, carbon dioxide, hydrocarbons, oxygen at full throttle for selected rotational speeds as well as selected engine performance parameters such as maximum power, torque, hourly and unit fuel consumption were determined. On the basis of the simulation tests performed, the reasonableness of using the tested alternative fuels was determined on the example of the drive unit without affecting its constructions, in terms of e.g. issue. Maximum power, torque, and fuel consumption have also been examined and compared. Thus, the impact of alternative fuels will be determined not only in terms of emissions, but also in terms of impact on the parameters of the power unit.


2018 ◽  
Vol 6 (1) ◽  
pp. 455-462
Author(s):  
František Synák ◽  
Vladimír Rievaj ◽  
Monika Kiktová ◽  
Tomasz Figlus

The amount of fossil fuels consumed has direct impact on global pollution and health status of the human population. An increasing amount of fuel consumed leads to the increase using of non-renewable resources of energy. This article deals with possibilities of reducing the fuel consumption by covering the loading capacity of tipping semi-trailer. The introduction of this paper describes the impact the amount of fuel consumed on production of carbon dioxide. The ratio of driving resistances to fuel consumption is shown in the graph. In the second part of the article there is the methodology of the measurements. The measurements were conducted by driving test. The fuel consumption of tipping semi-trailer was measured during the driving with uncovered and covered loading capacity. The importance of this paper lies in the quantified the possibilities of reducing the fuel consumption by covering the loading capacity of tipping semi-trailer designed to carry bulk materials.


Author(s):  
J. L. Wang ◽  
J. Y. Wu ◽  
C. Y. Zheng

CCHP systems based on internal combustion engines have been widely accepted as efficient distributed energy resources systems. CCHP systems can be efficient mainly because that the waste heat of engines can be recovered and used. If the waste heat is not used, CCHP systems may not be beneficial choices. PV-wind systems can generate electricity without fuel consumption, but the electric output depends on the weather, which is not reliable. A PV-wind system can be integrated into a CCHP system to form a higher efficient energy system. Actually, a hybrid energy system based on PV-wind devices and internal combustion engines has been studied by many researchers. But the waste heat of the engine is seldom considered in the previous work. Researches show that, 20∼30% energy can be converted into electricity by a small size engine while more than 70% is released. If the waste heat is not recovered, the system cannot reach a high efficiency. This work aims to analyze a hybrid CCHP system with PV-wind devices. Internal combustion engines are the prime movers whose waste heat is recovered for house heating or driving absorption chillers. PV-wind devices are added to reduce the fuel consumption and total cost. The optimal design method and optimal operation strategy are proposed basing on hourly analyses. Influences of the device cost and fuel price on the optimal dispatch strategies are discussed. Results show that all of the excess energy from the PV-wind system is not worth being stored by the battery. The hybrid CCHP system can be more economical and higher efficient in the studied case.


2020 ◽  
Vol 10 (11) ◽  
pp. 3705
Author(s):  
Ahmad Alshwawra ◽  
Florian Pohlmann-Tasche ◽  
Frederik Stelljes ◽  
Friedrich Dinkelacker

Reducing friction is an important aspect to increase the efficiency of internal combustion engines (ICE). The majority of frictional losses in engines are related to both the piston skirt and piston ring–cylinder liner (PRCL) arrangement. We studied the enhancement of the conformation of the PRCL arrangement based on the assumption that a suitable conical liner in its cold state may deform into a liner with nearly straight parallel walls in the fired state due to the impact of mechanical and thermal stresses. Combining the initially conical shape with a noncircular cross section will bring the liner even closer to the perfect cylindrical shape in the fired state. Hence, a significant friction reduction can be expected. For the investigation, the numerical method was first developed to simulate the liner deformation with advanced finite element methods. This was validated with given experimental data of the deformation for a gasoline engine in its fired state. In the next step, initially conically and/or elliptically shaped liners were investigated for their deformation between the cold and fired state. It was found that, for liners being both conical and elliptical in their cold state, a significant increase of straightness, parallelism, and roundness was reached in the fired state. The combined elliptical-conical liner led to a reduced straightness error by more than 50% compared to the cylindrical liner. The parallelism error was reduced by 60% to 70% and the roundness error was reduced between 70% and 80% at different liner positions. These numerical results show interesting potential for the friction reduction in the piston-liner arrangement within internal combustion engines.


Sign in / Sign up

Export Citation Format

Share Document