scholarly journals Determination of Aflatoxins and Ochratoxin a in Animal Liver Using HPLC-FD Method with Immunoaffinity Column Clean-Up

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Biljana Stojanovska-Dimzoska ◽  
Elizabeta Dimitrieska-Stojkovic ◽  
Zehra Hajrulai-Musliu ◽  
Risto Uzunov ◽  
Aleksandra Angeleska ◽  
...  

Abstract Analytical methods based on immunoaffinity column clean-up and quantitative determination with liquid chromatography-fluorescence detection were used to determine aflatoxins and ochratoxin A in liver samples. The validation of the procedures was performed. The linearity of the methods was checked, and a good coefficient of correlation was found for all aflatoxins and OTA as well. The LOD and LOQ were acceptable: 0.003 µg/kg and 0.009 µg/kg for AFB1; 0.001 µg/kg and 0.005 µg/kg for AFB2; 0.006 µg/kg and 0.020 µg/kg for AFG1; 0.007 µg/kg and 0.022 µg/kg for AFG2; 0.08 µg/kg and 0.27 µg/kg for OTA. The results for the repeatability estimated by the relative standard deviation (RSDr) were satisfactory and the obtained values were in the acceptable range (1.97–14.41% for all aflatoxins and 3.76-8.31% for OTA) at three proposed concentration levels. RSDR values showed acceptable correlation between two analysts for all four aflatoxins and OTA. The RSDR values were as followed: 2.37% and 5.60% for AFB1, 6.71% and 8.78% for AFB2, 4.40% and 7.00% for AFG1 and 10.30% and 13.91% for AFG2 (for the first and second analyst, respectively). The RSDR values for OTA were 4.91% and 3.15% (1 µg/kg); 3.76% and 4.12% (5 µg/kg) and 8.31% and 8.21% (10 µg/kg). The mean recovery for total aflatoxins and OTA were 78.10% and 93.34%, respectively. All validation parameters were in accordance to European legislation. They indicate that the proposed analytical procedures are suitable and they could be methods of choice for the determination of aflatoxins and OTA in liver samples.

2017 ◽  
Vol 10 (1) ◽  
pp. 53-61
Author(s):  
T. Wada ◽  
H. Saito ◽  
K. Aoyama ◽  
S. Saito ◽  
M. Shibukawa

An analytical method for quantifying ochratoxin A (OTA) in pet foods using high-performance liquid chromatography was developed, and an inter-laboratory study was conducted. OTA was extracted from samples with aqueous acetonitrile. The extract was purified by an immunoaffinity column, OCHRAKING, and analysed by high performance liquid chromatography with fluorescence detection. The limits of quantification by this method were 2 µg/kg for dry and semidry pet food and 1 µg/kg for wet type pet food. The calibration curve showed linearity in the range of 0.5-50 ng/ml (equivalent to 1-100 µg/kg for wet type pet food). The mean recoveries of OTA spiked at 1-5 µg/kg were in the range of 83.0-106% and relative standard deviations of the in-house method validation were 2.6-6.8%. The mean recoveries, repeatability, reproducibility and the Horwitz ratios for OTA from the inter-laboratory validation study were 75.6-83.1%, 3.5-6.1%, 5.0-15.0% and 0.23-0.68, respectively.


2013 ◽  
Vol 96 (3) ◽  
pp. 599-602 ◽  
Author(s):  
Ping Ding ◽  
Ziyou Mi ◽  
Yali Hou ◽  
Yigang He ◽  
Jianhua Xie

Abstract A method using LC was developed for determination of ochratoxin A (OTA) in feeds. The extracted samples were cleaned up by an immunoaffinity column prepared by covalently coupling polyclonal antibodies against OTA to cyanogen bromide-activated Sepharose 4B. The eluates were determined by LC with fluorescence detection. Recoveries of OTA from fortified samples of 1–10 μg/kg levels ranged from 84.3 to 90.0%, with CVs of 3.3–7.8%. The detection limit was 0.045 μg/kg based on an S/N of 3:1. A total of 65 feed samples were screened for OTA with the proposed method. The results showed that only nine samples were contaminated with OTAs at low levels. The presented method was successfully applied to quantify OTAs in real feed samples.


2001 ◽  
Vol 84 (6) ◽  
pp. 1818-1827 ◽  
Author(s):  
Angelo Visconti ◽  
Michelangelo Pascale ◽  
Gianluca Centonze ◽  
E Anklam ◽  
A M Betbeder ◽  
...  

Abstract The accuracy, repeatability, and reproducibility characteristics of a liquid chromatographic method for the determination of ochratoxin A (OTA) in white wine, red wine, and beer were established in a collaborative study involving 18 laboratories in 10 countries. Blind duplicates of blank, spiked, and naturally contaminated materials at levels ranging from ≤0.01 to 3.00 ng/mL were analyzed. Wine and beer samples were diluted with a solution containing polyethylene glycol and sodium hydrogen carbonate, and the diluted samples were filtered and cleaned up on an immunoaffinity column. OTA was eluted with methanol and quantified by reversed-phase liquid chromatography with fluorometric detection. Average recoveries from white wine, red wine, and beer ranged from 88.2 to 105.4% (at spiking levels ranging from 0.1 to 2.0 ng/mL), from 84.3 to 93.1% (at spiking levels ranging from 0.2 to 3.0 ng/mL), and from 87.0 to 95.0% (at spiking levels ranging from 0.2 to 1.5 ng/mL), respectively. Relative standard deviations for within-laboratory repeatability (RSDr) ranged from 6.6 to 10.8% for white wine, from 6.5 to 10.8% for red wine, and from 4.7 to 16.5% for beer. Relative standard deviations for between-laboratories reproducibility (RSDR) ranged from 13.1 to 15.9% for white wine, from 11.9 to 13.6% for red wine, and from 15.2 to 26.1% for beer. HORRAT values were ≤0.4 for the 3 matrixes.


2005 ◽  
Vol 88 (2) ◽  
pp. 526-535 ◽  
Author(s):  
Hamide Z Senyuva ◽  
John Gilbert

Abstract An interlaboratory study was conducted to evaluate the effectiveness of an immunoaffinity column cleanup liquid chromatography (LC) method for determination of aflatoxin B1 and total aflatoxins in hazelnut paste at European regulatory limits. The test portion was extracted with methanol–water (6 + 4). The extract was filtered, diluted with phosphate-buffered saline (PBS) solution to a specified solvent concentration, and applied to an immunoaffinity column containing antibodies specific to aflatoxins. The aflatoxins were removed from the immunoaffinity column with methanol, and then quantified by reversed-phase LC with post-column derivatization (PCD) involving bromination. The PCD was achieved with electrochemically generated bromine (Kobra Cell®) followed by fluorescence detection (except for one participant who used pyridinum hydrobromide perbromide for bromination). Hazelnut paste, both naturally contaminated with aflatoxins and blank (<0.1 ng/g) for spiking by participants with aflatoxins, was sent to 14 collaborators in Belgium, The Netherlands, Spain, Turkey, the United Kingdom, and the United States. Test portions were spiked at levels of 4.0 and 10.0 ng/g for total aflatoxins by participants using supplied total aflatoxins standards. Recoveries for total aflatoxins and aflatoxin B1 averaged from 86 to 89%. Based on results for naturally contaminated samples (blind duplicates at 3 levels ranging from 4.0 to 11.8 ng/g total aflatoxins), the relative standard deviation for repeatability (RSDr) ranged from 2.3 to 3.4% for total aflatoxins and from 2.2 to 3.2% for aflatoxin B1. The relative standard deviation for reproducibility (RSDR) ranged from 6.1 to 7.0% for total aflatoxins and from 7.3 to 7.8% for aflatoxin B1. The method showed exceptionally good within-laboratory and between-laboratory precision for hazelnut paste, as evidenced by HORRAT values, which in all cases were significantly below target levels, the low levels of determination for both aflatoxin B1 and total aflatoxins.


2001 ◽  
Vol 84 (2) ◽  
pp. 444-450 ◽  
Author(s):  
A Catherine Entwisle ◽  
Alison C Williams ◽  
Peter J Mann ◽  
Joanne Russell ◽  
Philip T Slack ◽  
...  

Abstract A collaborative study was conducted to evaluate a liquid chromatography (LC) method for ochratoxin A using sequential phenyl silane and immunoaffinity column cleanup. The method was tested at 3 different levels of ochratoxin A in roasted coffee, which spanned the range of possible future European regulatory limits. The test portion was extracted with methanol and sodium bicarbonate by shaking for 30 min. The extract was filtered, centrifuged, and then cleaned up on a phenyl silane column before being eluted from the washed column with methanol–water. The eluate was diluted with phosphate-buffered saline (PBS) and applied to an ochratoxin A immunoaffinity column, which was washed with water. The ochratoxin A was eluted with methanol, the solvent was evaporated, and the residue was redissolved in injection solvent. After injection of this solution onto a reversed-phase LC apparatus, ochratoxin A was measured by fluorescence detection. Eight laboratory samples of low-level naturally contaminated roasted coffee and 2 laboratory samples of blank coffee (< 0.2 ng/g ochratoxin A at the signal-to-noise ratio of 3:1), along with ampules of ochratoxin A calibrant and spiking solutions, were sent to 15 laboratories in 13 different European countries. Test portions of the laboratory samples were spiked at levels of 4 ng/g ochratoxin A, and recoveries ranged from 65 to 97%. Based on results for spiked blank material (blind duplicates) and naturally contaminated material (blind duplicates at 3 levels), the relative standard deviation for repeatability (RSDr) ranged from 2 to 22% and the relative standard deviation for reproducibility (RSDR) ranged from 14 to 26%. The method showed acceptable within- and between-laboratory precision, as evidenced by HORRAT values, at the low level of determination for ochratoxin A in roasted coffee.


Toxins ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 196 ◽  
Author(s):  
Ali Alsharif ◽  
Yeun-Mun Choo ◽  
Guan-Huat Tan

Mycotoxins are common food contaminants which cause poisoning and severe health risks to humans and animals. The present study applied chemometric approach in liquid chromatography-tandem mass spectrometry (LC-MS/MS) optimization for simultaneous determination of mycotoxins, i.e., aflatoxins B1, B2, G1, and G2, and ochratoxin A. The validated quick, easy, cheap, effective, rugged, and safe (QuEChERS)-LC-MS/MS method was used to study the occurrence of mycotoxins in 120 food matrices. The recovery ranges from 81.94% to 101.67% with relative standard deviation (RSD) lesser than 11%. Through the developed method, aflatoxins were detected in raisin, pistachio, peanut, wheat flour, spice, and chili samples with concentration ranges from 0.45 to 16.93 µg/kg. Trace concentration of ochratoxin A was found in wheat flour and peanut samples which ranged from 1.2 to 3.53 µg/kg. Some of the tested food samples contained mycotoxins of above the European legal maximum limit.


2008 ◽  
Vol 71 (5) ◽  
pp. 1038-1042 ◽  
Author(s):  
SHIGEKUNI NOBA ◽  
MASAYUKI OMOTE ◽  
YASUSHI KITAGAWA ◽  
NAOKI MOCHIZUKI

A simple and accurate method has been developed for determining ochratoxin A (OTA), using an immunoaffinity column for cleanup and liquid chromatography–tandem mass spectrometry for identification and quantification. Wine samples were diluted with a solution containing polyethylene glycol 8000 and sodium hydrogen carbonate, filtered through a glass microfiber filter, and cleaned up on an immunoaffinity column. OTA was then eluted with methanol–acetic acid (98:2) and analyzed by liquid chromatography–tandem mass spectrometry. The average recoveries of OTA from red and white wines were 95 and 96.7% (spiked OTA level was 0.05 ng/ml) and repeatabilities (relative standard deviation) were 3.8 and 2.4%, respectively. The detection limit was 0.0003 ng/ml based on the signal-to-noise ratio in wine of 3:1. Analysis of 74 samples of domestic and imported wines showed OTA levels ranging from <0.0003 to 0.82 ng/ml, with an incidence of contamination of 92.1% for red wines, and <0.0003 to 0.51 ng/ml, with an incidence of contamination of 77.8% for white wines. These detection rates were higher than those rates of past reports of OTA contamination in wine, due to the high sensitivity of this method. However, all samples analyzed in this study complied with European Union regulations. It is concluded that this method is a useful tool for the quality assurance of wine.


2012 ◽  
Vol 577 ◽  
pp. 69-72 ◽  
Author(s):  
Shu Yu Liu ◽  
Anaerguli Maihemuti

A simple and rapid high performance liquid chromatography (HPLC) assay was developed to identify and measure theβ-sitosterol with chemical course and material applications in jatropha seed oil. The stigmasterol was isolated with a good selectivity by HPLC employing reversed phase C18 columns. The components were separated by mobile phase of methanol-water (99/1, v/v) and detected at 205nm. The quantitation of the stigmasterol was reproducible and the method relative standard deviation is 1.1%. The mean analytical recovery was 96.2%.


Author(s):  
Biljana Stojanovska-Dimzoska ◽  
Zehra Hajrulai-Musliu ◽  
Elizabeta Dimitrieska-Stojkovic ◽  
Risto Uzunov ◽  
Pavle Sekulovski

Liquid chromatography with fluorescence detection using immunoaffinity column clean-up was a method described for determination of aflatoxins (AFB1, AFB2, AFG1 and AFG2) in peanuts and peanut based products. The validation of the procedure was performed. Good coefficient of correlation was found for all aflatoxins in the range of 0.9993-0.9999. Limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.003-0.005 mg/kg and 0.009-0.023 mg/kg, respectively, which was acceptable. The mean recovery for total aflatoxins was 88.21%. The method also showed acceptable precision values in the range of 0.171-2.626% at proposed concentration levels for all four aflatoxins. RSDR values (within laboratory reproducibility) calculated from the results showed good correlation between two analysts for all aflatoxins and they ranged from 4.93-11.87%. The developed method was applied for the determination of aflatoxins in 27 samples of peanuts and peanut based products. The results showed that 21 peanut samples (77.7%) were below LOD of the method. Three samples had positive results over the MRL. There was one extreme value recorded for the total aflatoxins in peanut (289.2 mg/kg) and two peanut based products, peanut snack and peanut, with total content of aflatoxins being 16.3 mg/kg and 8.0 mg/kg, respectively. The obtained results demonstrated that the procedure was suitable for the de?termination of aflatoxins in peanuts and peanut based products and it could be implemented for the routine analysis.


2001 ◽  
Vol 84 (4) ◽  
pp. 1116-1124 ◽  
Author(s):  
Joerg Stroka ◽  
Elke Anklam ◽  
Urban Joerissen ◽  
John Gilbert ◽  
A Barmark ◽  
...  

Abstract A collaborative study was conducted to evaluate the effectiveness of an immunoaffinity column cleanup liquid chromatography (LC) method for determination of aflatoxin B1 in a milk powder based infant formula at a possible future European regulatory limit (0.1 ng/g). The test portion was extracted with methanol–water (8 + 2 [v + v]), filtered, diluted with water, and applied to an immunoaffinity column. The column was washed with water to remove interfering compounds, and the purified aflatoxin B1 was eluted with methanol. The separation and determination of the aflatoxin B1 was performed by reversed-phase LC and detected by fluorescence after postcolumn derivatization (PCD) involving bromination. PCD was achieved with either pyridinum hydrobromide perbromide (PBPB) or an electrochemical (Kobra) cell by addition of bromide to the mobile phase. The baby food (infant formula) test samples, both spiked and naturally contaminated with aflatoxin B1, were sent to 14 laboratories in 13 different European countries. Test portions were spiked at levels of 0.1 and 0.2 ng/g for aflatoxin B1. Recoveries ranged from 101 to 92%. Based on results for spiked test samples (blind pairs at 2 levels) and naturally contaminated test samples (blind pairs at 3 levels), the relative standard deviation for repeatability (RSDr) ranged from 3.5 to 14%. The relative standard deviation for reproducibility (RSDR) ranged from 9 to 23%. Nine participants used PBPB derivatization, and 5 particpants used the Kobra cell. There was no evidence of method performance depending on the derivatization method used. The method showed acceptable within- and between-laboratory precision for baby food matrix, as evidenced by HORRAT values, at the target levels of determination for aflatoxin B1.


Sign in / Sign up

Export Citation Format

Share Document