scholarly journals Nanocrystallization and phase formation in Fe73.5Nb3Cu1Si15.5B7 amorphous ribbon under laser heating

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yulia S. Nykyruy ◽  
Stepan I. Mudry ◽  
Yuriy O. Kulyk ◽  
Marcin Lapinski

AbstractLaser-induced local crystallization in Finemet-type alloy was studied using X-ray diffraction, SEM and EDX methods. For investigated conditions of irradiation (wavelength λ = 1.06 µm, laser power density 50 W/cm2), it was found that primary crystallization starts with the formation of the nanocrystalline α-Fe(Si) solid solution at shorter exposure time and the second step crystallization with the nanocrystalline hexagonal H-phase formation occurs in longer exposure time. Changes in the local element concentration were observed at the surface of the irradiated zone and at the ribbon fracture. It was shown that the nonlinear temperature field due to the laser irradiation resulted in changes of the local elements concentration and this feature changed crystallization mechanism of the Finemet-type alloy.

1991 ◽  
Vol 6 (2) ◽  
pp. 66-69
Author(s):  
S. Ariely ◽  
G. Kimmel ◽  
S. F. Dirnfeld ◽  
M. Bamberger ◽  
B. Prinz

AbstractThe kinetics of γ'-phase formation in a Ni-base superalloy were studied. The data (pairs of cps and 2θ) were processed by the deconvolution program (Wiedemann, Unnam and Clark, 1987), which was rewritten in FORTRAN and installed on an IBM/VM and a VAX/VMS host computer. Optimal program parameters were found. Pure nickel was used as a standard. The only evidence obtained from the raw data is that the early stage of the aging process is accompanied by broadening. Deconvolution resolved the peaks into three kinds of diffraction lines: Ni(γ), precipitate (γ'), and undefined lines which have been interpreted as satellites. The results show that our X-ray diffraction lines are composed of the main diffraction lines of nickel-base A1 type alloy and additive satellites. In an advanced stage of aging the satellites assume the typical diffraction pattern of γ' phase.


2007 ◽  
Vol 537-538 ◽  
pp. 185-190
Author(s):  
Dóra Janovszky ◽  
Jenő Sólyom ◽  
András Roósz ◽  
Zsolt Czigány

The devitrification of the Fe-Ni-B-Si amorphous ribbon was investigated by the differential scanning calorimetry (DSC) with scanning and isothermal methods. The devitrification of rapidly quenched ribbons is a multilevel process. On the basis of DSC investigations it was determined that crystallization occurs in three processes up to 700°C in the Fe40Ni40B16Si4 alloy. In the present work the first and second steps have been discussed. The first crystallization step involves the segregation of the Fe-Ni crystalline solid solution from the amorphous matrix. During the second crystallization phase, in addition to austenite, nickel silicide and two types of iron borides crystallize as well. The ribbons were relaxed at 380°C for 2 hours, following the pre-annealing at different temperatures. Pre-annealing was performed in the DSC within the temperature range elapsing from 395°C to 420°C. The preannealing at temperatures below the first exothermal DSC peak has an effect on the crystallization processes. After the pre-annealing the samples were investigated by DSC. The DSC peak of the first crystallization step shifts to higher temperatures and decrease its enthalpy. The scanning DSC measurements, applied after the isothermal pre-annealing, were performed in order to determine the fraction of the ribbon transformed in the primary crystallization step. The second DSC peak shifts to lower temperatures with a maximum of 4°C. The X-ray diffraction (XRD) analyses reveal that the lattice constant changes with the pre-annealing temperatures. Such observation was also supported by the circumstance that the composition of the Fe-Ni solid solution undergoes certain modifications.


2010 ◽  
Vol 297-301 ◽  
pp. 602-607
Author(s):  
Evgeny N. Selivanov ◽  
R.I. Gulyaeva ◽  
N.I. Selmenskich

The phase formation in oxide-sulphidic systems was studied with the use of X-ray diffraction, mineralography, combined thermogravimetry and calorimetry, in addition to Х-ray spectral microanalysis. The purpose of this work was to estimate the effect of cooling rate of melts in FeOx-SiO2-Cu2O-ZnO-FeS systems on structure and content of the resulting phases. Test subjects were two samples having following compositions (wt. %): I - 40.5 Fe, 2.41 S, 0.87 Cu, 3.87 Zn, 32.1 SiO2 and II - 40.7 Fe, 3.05 S, 8.55 Cu, 4.1 Zn and 19.5 SiO2. Cooling rate of the melts was changed from 0.3 up to 900оС/s.


2001 ◽  
Vol 699 ◽  
Author(s):  
Xiaodong Zou ◽  
Tariq Makram ◽  
Rosario A. Gerhardt

AbstractWaspaloy is a nickel base super-alloy used in aircraft engines. When this alloy is placed in service, it is subjected to long term exposure at high temperatures, which can cause the reinforcing gamma prime precipitate population to fluctuate and thus affect its structural integrity. The population fluctuates as a result of coarsening, dissolution or re-precipitation. Samples exposed to 1200° F for times ranging from 0 to 12626 hours were characterized using impedance spectroscopy, microhardness measurements, x-ray diffraction and quantitative stereology. Two important parameters were derived from the impedance measurements: (1) the imaginary admittance peak magnitude (Ymax) and (2) the associated relaxation frequency (fmax). As the distribution, shape and size of the precipitates change with exposure time, these parameters were also found to vary. In addition to the changes in precipitate geometry, lattice constant changes detected by analyzing x-ray diffraction data suggest that there are compositional shifts in the matrix as well as the gamma prime precipitates. Furthermore, the preferred orientation of the precipitates can also be seen to change with exposure time. These changes in composition, size and shape as a function of thermal exposure time are accompanied by changes in the volume fractions of primary and secondary gamma prime particles present. Using effective medium models, it is possible to predict that the measured properties are related to the gamma prime population. The grain boundary carbides do not appear to play any role at the conditions presented.


2008 ◽  
Vol 55-57 ◽  
pp. 353-356
Author(s):  
Nawarat Wora-uaychai ◽  
Nuchthana Poolthong ◽  
Ruangdaj Tongsri

In this research, titanium carbide-nickel (TiC-Ni) composites, with tungsten carbide addition, were fabricated by using a powder metallurgy technique. The TiC-Ni mixtures containing between 0-15 wt. % tungsten carbide (WC), were compacted and then sintered at 1300°C and 1400°C, respectively. The phase formation and microstructure of the WC-added TiC-Ni composites have been investigated by X-ray diffraction and scanning electron microscopy techniques. Mechanical properties of these composites were assessed by an indentation technique. The X-ray diffraction patterns showed no evidence of tungsten rich phases in the sintered WC-added cermets. This indicates that during the sintering process, tungsten carbide particles were dissolved in metallic binder phase (Ni phase) via dissolution/re-precipitation process during liquid phase sintering. The liquid phase formed during sintering process could improve sinterability of TiC-based cermets i.e., it could lower sintering temperatures. The TiC-Ni composites typically exhibited a core-rim structure. The cores consisted of undissolved TiC particles enveloped by rims of (Ti, W)C solid solution phase. Hardness of TiC-Ni composites increased with WC content. Sintering temperature also had a slight effect on hardness values.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 409 ◽  
Author(s):  
Dandan Zhao ◽  
Wen-Can Huang ◽  
Na Guo ◽  
Shuye Zhang ◽  
Changhu Xue ◽  
...  

In this research, a two-step extraction approach was developed for chitin preparation from shrimp shells by utilizing citric acids and deep eutectic solvents (DESs), which effectively removed minerals and proteins. In the first step, minerals of shrimp shells were removed by citric acid, and the demineralization efficiency reached more than 98%. In the second step, the removal of protein was carried out using deep eutectic solvents with the assistance of microwave, and the deproteinization efficiency was more than 88%. The results of scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction analysis (XRD), and thermogravimetric analysis (TGA) showed that the quality of DES-prepared chitin was comparable to that of traditional acid/alkali-prepared chitin. These results were realized without utilizing hazardous chemicals, which are detrimental to the environment. This research indicates that a DES-based preparation approach has the potential for application in the recovery of biopolymers from natural resources.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4013 ◽  
Author(s):  
Artur Bukowczan ◽  
Edyta Hebda ◽  
Maciej Czajkowski ◽  
Krzysztof Pielichowski

In this work, we report for the first time on the influence of polyhedral oligomericsilsesquioxanes (POSS) on the structure and properties of liquid crystalline polyurethane (LCPU). LCPU/POSS hybrids were synthesized via a two-step method. In the first step, 4,4′-methylenephenyl diisocyanate (MDI) and polytetramethylene ether glycol (PTMG) reacted with functionalized trisilanolphenyl POSS (TSP-POSS) bearing three hydroxyl groups. In the second step, the growing chain was extended with 4,4′-bis(hydroxyhexoxy)biphenyl (BHHBP). FTIR measurements confirmed the chemical bonding between the POSS and LCPU matrix and showed the influence of the silsesquioxane modification on the intensity of hydrogen bonds. The DSC and POM techniques confirmed the formation of liquid crystalline phases. The incorporation of silsesquixanes into the LC matrix leads to higher melting and isotropization temperatures along with the broadening phase transition effect. Scanning electron microscopy showed a good distribution of POSS moieties, both in the bulk and on the surface of the liquid crystalline PU matrix, whereby wide-angle X-ray diffraction (WAXD) patterns revealed halos from both the liquid crystalline and unmodified polyurethane matrix. The stress at the breaking points for LCPU/POSS hybrids containing 50% and 60% of elastic segments is greater than the stress at the breaking point of the reference material (LCPU), what is due to good dispersion of POSS in less elastic matrix. Thermal properties of the LCPU/POSS materials obtained, determined by TGA, revealed that the char residue increased with the amount of POSS for 40% of elastic segments materials.


Sign in / Sign up

Export Citation Format

Share Document