scholarly journals Preparation and Up-Conversion Luminescence of Yb3+/Er3+/GZO Ceramics

2018 ◽  
Vol 20 (3) ◽  
pp. 15-19
Author(s):  
Guomin Li ◽  
Bing Wang ◽  
Rui Wang ◽  
Huiling Liu

Abstract Yb3+/Er3+/GZO ceramics have been synthesized with high temperature solid-state method. The phase and structure of the Yb3+/Er3+/GZO ceramics were characterized by X-ray diffraction (XRD). The XRD pattern that following ions Yb3+, Er3+ and Ga3+ were well doped into the ZnO lattice. Effi cient visible up-conversion (UC) red and green emission were observed under 980 nm excitation. The mechanism of the UC luminescence is investigated on the basis of the UC luminescence emission spectra, the power curve and energy level diagram. The infl uence of doping ions to the intensity ratio of red to green is analyzed and high purity of red light (red/green = 29.9) is fi nally obtained.

2016 ◽  
Vol 703 ◽  
pp. 316-320
Author(s):  
Hai Feng Chen ◽  
Jing Ling Hu ◽  
Bing Xu

Using NH4VO3, Bi (NO3)3•5H2O and Co (NO3)2•6H2O as raw materials, Co doped BiVO4 (Co/BiVO4) photocatalysts were successfully prepared by solid state method. And the photo catalytic properties were test in this work. Crystal structures of these samples were characterized by X-ray diffraction (XRD). The Methyl Orange (MO) was simulated as the sewage under the visible light to explorer the influence of the illumination time and the mass of photocatalyst. The visible-light absorption spectrum of BiVO4 was broadening with doping Co. It was found that the Co/BiVO4 had higher photocatalytic activity than pure BiVO4 .The reason of enhanced catalytic effect also had been analyzed and discussed in the article.


2021 ◽  
Vol 19 (11) ◽  
pp. 108-115
Author(s):  
Nihad Ali Shafeek

This research contains preparing the superconducting compound Bi2-xAgxSr2Ca2Cu3O10+δ and studying its structural and electrical characteristics. The samples were prepared using the solid-state method in two stages, and different concentrations of x were (x= 0.2,0.4,0.6,0.8) replaced instead of bismuth Bi. Then, using a hydraulic press 9 ton/cm2 and sintering with a temperature of 850°C, the samples were pressed. Next, x-ray diffraction is used to study the structural properties. The study of these samples was presented in different proportions of x values, where x = 0.4 is the best compensation ratio of x. A critical temperature of 1400C and the Tetragonal structure was got. After that, the effect of laser nidinium _ yak (Nd: YAG laser) was used on the compositional. It was found that the temperature value increased, so we got the best critical temperature, which is 142 0C.


2013 ◽  
Vol 591 ◽  
pp. 272-276
Author(s):  
Fang Zhang ◽  
Chao Song ◽  
Ling Li Ma ◽  
Xiao Li Xu ◽  
Zi Fei Peng

Sr2CeO4: Ho3+ was prepared by high-temperature solid-state method. The products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and photo luminescent (PL). The Sr2CeO4:Ho3+ phosphors showed a red emission under the near-ultraviolet excitation (280 nm) and the main emission centered at 475 nm. It has been found that A+ (A+ = Li+, Na+ or K+) codoped Sr2CeO4: Ho3+ phosphors could lead to a remarkable increase of photoluminescence. Luminous intensity was the highest when doping Li+ ions. Investigation indicated that Sr2Ce0.989O4: 0.001Ho3+, 0.01Li+ exhibited the strongest emission. The average particle size was about 6 um. The optimum sintering temperature was 1200 °C and the possible mechanism was also discussed.


2011 ◽  
Vol 412 ◽  
pp. 61-64
Author(s):  
Xiao Bo Wu ◽  
Da Zhi Sun ◽  
Dan Yu Jiang ◽  
Hai Fang Xu ◽  
De Xin Huang ◽  
...  

3Y-TZP powder has been successfully synthesized by gel solid-state method. The structural phases of powder particles were analyzed by X-ray diffraction and the morphology was analyzed by scanning electron microscopy. The average size of grains was 230 nm. The sintering behavior, mechanical properties and microstructure of 3Y-TZP ceramics sintered by this powder were investigated. The experiment results showed that the mechanical properties of ceramics were excellent.


2010 ◽  
Vol 663-665 ◽  
pp. 137-140 ◽  
Author(s):  
Jia Yue Sun ◽  
Wei Hang Zhang ◽  
Yu Jing Lan ◽  
Hai Yan Du

Two-color emission phosphors BaGd2(MoO4)4: Eu3+, Er3+, Yb3+ have been synthesized by the high temperature solid-state method. The as-prepared BaGd2(MoO4)4: Eu3+, Er3+, Yb3+ phosphors can emit intense red light under 395 nm UV excitation, while it will show bright green light upon 980 nm infrared light excitation. It is found that the red emission peaks at 595 and 614 nm should be attributed to 5D0-7F1 and 5D0-7F2 transitions of Eu3+, respectively. The green emission peaks centered at 532 and 553 nm under 980 nm excitation, are attributed to Er3+ transitions from 4H11/2 -4I15/2 and 4S3/2-4I15/2, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Hamadi Hamza ◽  
Mohamed Faouzi Zid ◽  
Ahmed Driss

LiNa5K3Mo11As3O45 is a new inorganic compound. It was synthesized by a solid state method. The crystal structure has been studied by single crystal X-ray analysis. The R-values reached 2.8%. The title compound crystallizes in the triclinic system, space group P-1, with a = 10.550 (2) Å, b = 11.723 (2) Å, c = 17.469 (3) Å, α = 102.35 (3)°, β = 87.61 (2)°, and γ = 111.03 (3)°. The anionic unit [Mo11As3O45]9− is formed by nine MoO6 octahedra, two MoO5 trigonal bipyramids, and three AsO4 tetrahedra. The association of [Mo11As3O45]9− units, running along [010], leads to a one-dimensional framework. Li, K, and Na are located in the space surrounding the anionic ribbons. This material was characterized by SEM microscopy, IR spectroscopy, and powder X-ray diffraction. The electrical conductivity was investigated from 528 K to 673 K by impedance complex followed by DSC spectroscopy.


2021 ◽  
Author(s):  
Khmiri Ismail ◽  
Issa KRIAA ◽  
Hamadi KHEMAKHEM

Abstract The synthesis of (Ba 0.99 Ca 0.01 )(Zr 0.2 Ti 0.8 )O 3 (BCZT) and doped (Ba 0.99 Ca 0.01 )(Zr 0.2 Ti 0.8-x Mn x )O 3 (BCZT-xMn) ceramics was successfully carried out by the solid-state method. The doping effect is followed by X-ray powder diffraction, scanning electron microscopy (SEM), and dielectric and conductivity measurements. Indeed, X-ray diffraction measurements show the crystalline structure of ceramics. SEM images indicate the doping effect on the studied perovskite microstructure. The results indicate that during doping the maximum value of the temperature (Tm) of the dielectric constant varies slightly, and there will be a considerable decrease in permittivity, dielectric losses and conductivity. Manganese ions are well integrated in the perovskite while maintaining the solid solution.


2009 ◽  
Vol 416 ◽  
pp. 553-557 ◽  
Author(s):  
Zeng Dian Zhao ◽  
Yu Hong Huang ◽  
Yu Gang Zhao ◽  
Xian Jin Yu

The silicon-coated iron powder was evenly mixed with corundum powder and high temperature binder. After tabletting and sintering, followed by crushing and screening, the magnetic abrasive with a certain size was obtained. Scanning electron microscope (SEM), Energy dispersive spectrometer (EDS) and X-ray diffraction (XRD) were respectively used to characterize the morphology, elemental composition and the crystalloid structures of magnetic abrasive. The ferromagnetic phase and abrasive phase were combined firmly. The magnetic abrasive prepared showed a good grinding ability, whose durable time was up to 24 min. Irregular particles was obtained by smashing the magnetic abrasive, mainly composed of Al2O3, Fe2O3, α-Fe, AlFeO3, (Al, Fe)7BO3(SiO4)3O3.


2008 ◽  
Vol 368-372 ◽  
pp. 5-7
Author(s):  
J.A. Garcia ◽  
M.U. Herrera

Synthesis of Zn-doped PbTiO3 was done using solid-state method. The effects of varying amount of Zn were investigated. Stoichiometric amount of precursors were mixed and ground. The pressed mixtures were calcined at 800°C and sintered at 1,100 °C after regrinding. The samples were characterized using X-ray Diffraction (XRD), Differential Thermal Analysis (DTA), and Scanning Electron Microscopy (SEM). The XRD verifies the existence of PTO in the samples. DTA shows the thermal profile of the samples. Among the different concentrations of Zn that were added, the sample with 5% mole fraction showed the lowest melting point. For 5% mole fraction and greater, SEM images showed flattening and fusing of grains.


Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 419
Author(s):  
Jiameng Zhang ◽  
Yanan Hao ◽  
Meihua Bi ◽  
Guoyan Dong ◽  
Xiaoming Liu ◽  
...  

Ba (Zr0.2Ti0.8) O3-50% (Ba0.7Ca0.3) TiO3 (BZT-0.5BCT) ceramics with different doping contents of Pr3+ were prepared by the conventional solid-state reaction. The phase structure and crystallinity of the fabricated ceramics were investigated by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Photoluminescence (PL) emission spectra were measured to analyze the PL characteristics. The strong intensities of a green band at 489 nm and a red band at 610 nm were observed. The maximum emission intensity of the PL spectrum was achieved in the BZT-0.5BCT ceramic with 0.2% mol of Pr3+ ions. Furthermore, the PL spectra of BZT-0.5BCT ceramics were found to be sensitive to polarization of the ferroelectric ceramics. Compared with the unpoled ceramics, the green emission increased about 42% and a new emission peak at 430 nm appeared for the poled ceramics. With excellent intrinsic ferroelectricity and an enhanced PL property, such material has potential to realize multifunctionality in a wide application range.


Sign in / Sign up

Export Citation Format

Share Document