scholarly journals Analysis of air pollution exposure in the area of Iasi county – a warning signal for lung health and the risk of developing COPD

Pneumologia ◽  
2021 ◽  
Vol 69 (3) ◽  
pp. 166-173
Author(s):  
Ioana Buculei ◽  
Mona-Elisabeta Dobrin ◽  
Anda Tesloianu ◽  
Cristina Vicol ◽  
Radu-Adrian Crișan Dabija ◽  
...  

Abstract Air pollution is a major threat to public health, and the effects of pollution are perceived in all countries of the world, by all social categories, regardless of age. Chronic obstructive pulmonary disease (COPD) has a growing prevalence worldwide and an increasing number of risk factors that exacerbate symptoms and accelerate disease progression. Exposure to air pollution is one of the less studied and less investigated risk factors for COPD. Depending on the size and chemical nature of the pollutant, it can overcome the defence mechanism of the respiratory system and enter the lung tissues, thus causing some respiratory diseases. The World Health Organisation (WHO) reports that six major air pollutants have been identified, namely particulate matter (PM), ground-level ozone, carbon monoxide, sulphur dioxide, nitrogen dioxide and lead. The severe impact of PM exposure is demonstrated by the link between exposure to high concentrations of PM and certain severe diseases such as silicosis, lung cancer, cardiovascular disease and COPD. In Iași County, Romania, air quality measurements are performed by six automatic air quality monitoring stations, and the data obtained are used to create annual reports and these are also available online. Due to the high concentrations of air pollutants, the city of Iași is one of the three topmost polluted cities in Romania. A future assessment on the impact of air pollution on the health of the inhabitants of these cities and the implementation of new methods to improve air quality is needed.

Author(s):  
Nilüfer Aykaç ◽  
Pınar Pazarlı Bostan ◽  
Sabri Serhan Olcay ◽  
Berker Öztürk

INTRODUCTION: Particulate matter, sulfur dioxide, ozone, and nitrogen oxide compounds are the main air pollutants. The purpose of this research is to analyze the five-year air quality of Istanbul and examine the effect of movement restrictions due to the COVID-19 pandemic on pollutants. METHODS: The public data of the National Air Quality Observation Network has been utilized. The research has been conducted based on the five-year daily averages of PM10, NO2, and NOx pollutants for Istanbul between 2016 - 2020. The data of stations which measured for 75% and more throughout the year has been used. The effect of lockdowns enforced due to COVID-19 was revealed by comparing data of pollutants from April and May of 2020 to the same period in 2019. RESULTS: There were 12 stations between 2016 – 2018, and 39 stations in 2019 and 2020 which measured particulate matter and nitrogen oxide compounds. Only 9 stations reached the standard of measuring pollution for 75% and more throughout the year. The PM10, NO2, and NOx levels measured by all the 9 stations between 2016 - 2020 are above the limit values set by the World Health Organization (WHO). The lockdowns in 2020 have not been helping improvements in air pollution issue. However, there have been regressions of 33.4%, 59.6%, and 52.6% in the overall average particulate matter, nitrogen oxide, and nitrogen dioxide concentrations during the lockdowns between 23-26 of April, 1-3 of May, and 23-26 of May, respectively. DISCUSSION AND CONCLUSION: The air pollution issue in Istanbul has not improved in a meaningful and significant manner for the last five years. There is a significant deficiency in measuring traffic pollution. It has been found that two days long lockdowns and physical movement restrictions due to COVID-19 have significantly contributed to a significant regression in the overall concentration of air pollutants.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1700
Author(s):  
Melissa Chalada ◽  
Charmaine A. Ramlogan-Steel ◽  
Bijay P. Dhungel ◽  
Christopher J. Layton ◽  
Jason C. Steel

Uveal melanoma (UM) is currently classified by the World Health Organisation as a melanoma caused by risk factors other than cumulative solar damage. However, factors relating to ultraviolet radiation (UVR) susceptibility such as light-coloured skin and eyes, propensity to burn, and proximity to the equator, frequently correlate with higher risk of UM. These risk factors echo those of the far more common cutaneous melanoma (CM), which is widely accepted to be caused by excessive UVR exposure, suggesting a role of UVR in the development and progression of a proportion of UM. Indeed, this could mean that countries, such as Australia, with high UVR exposure and the highest incidences of CM would represent a similarly high incidence of UM if UVR exposure is truly involved. Most cases of UM lack the typical genetic mutations that are related to UVR damage, although recent evidence in a small minority of cases has shown otherwise. This review therefore reassesses statistical, environmental, anatomical, and physiological evidence for and against the role of UVR in the aetiology of UM.


2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 750
Author(s):  
Hoang Ngoc Khue Vu ◽  
Quang Phuc Ha ◽  
Duc Hiep Nguyen ◽  
Thi Thu Thuy Nguyen ◽  
Thoai Tam Nguyen ◽  
...  

Along with its rapid urban development, Ho Chi Minh City (HCMC) in recent years has suffered a high concentration of air pollutants, especially fine particulate matters or PM2.5. A comprehensive study is required to evaluate the air quality conditions and their health impact in this city. Given the lack of adequate air quality monitoring data over a large area of the size of HCMC, an air quality modeling methodology is adopted to address the requirement. Here, by utilizing a corresponding emission inventory in combination with The Air Pollution Model-Chemical Transport Model (TAPM-CTM), the predicted concentration of air pollutants is first obtained for PM2.5, NOx, and SO2. Then by associating the pollutants exposed with the mortality rate from three causes, namely Ischemic Heart Disease (IHD), cardiopulmonary, and lung cancer, the impact of air pollution on human health is obtained for this purpose. Spatial distribution has shown a high amount of pollutants concentrated in the central city with a high density of combustion vehicles (motorcycles and automobiles). In addition, a significant amount of emissions can be observed from stevedoring and harbor activities, including ferries and cargo handling equipment located along the river. Other sources such as household activities also contribute to an even distribution of emission across the city. The results of air quality modeling showed that the annual average concentrations of NO2 were higher than the standard of Vietnam National Technical Regulation on Ambient Air Quality (QCVN 05: 2013 40 µg/m3) and World Health Organization (WHO) (40 µg/m3). The annual average concentrations of PM2.5 were 23 µg/m3 and were also much higher than the WHO (10 µg/m3) standard by about 2.3 times. In terms of public health impacts, PM2.5 was found to be responsible for about 1136 deaths, while the number of mortalities from exposure to NO2 and SO2 was 172 and 89 deaths, respectively. These figures demand some stringent measures from the authorities to potentially remedy the alarming situation of air pollution in HCM City.


2010 ◽  
Vol 25 (5) ◽  
pp. 257-260 ◽  
Author(s):  
J R H Scurr ◽  
N Ahmad ◽  
D Thavarajan ◽  
R K Fisher

Introduction This study has examined the impact of the World Health Organization's Research into Global Hazards of Travel (WRIGHT) Project's phase 1 report on the information given by airlines to their passengers regarding traveller's thrombosis. Methods Official websites of all airlines flying from Heathrow (UK) and John F Kennedy (USA) were located through links on the websites of these two busy international airports. In June 2007, each site was scrutinized by three independent researchers to identify if traveller's thrombosis and its risk factors were discussed and what methods of prevention were advised. This exercise was repeated a year after the publication of the WRIGHT report. Results One hundred and nineteen international airlines were listed in 2007 (12 were excluded from analysis). A quarter (27/107) of airlines warned of the risk of traveller's thrombosis. A year later, five airlines were no longer operational and there had been no increase in the discussion of traveller's thrombosis (23/102). Additional risk factors discussed in June 2007 versus September 2008: previous venous thromboembolism (16%, 15%); thrombophilia (14%, 15%); family history (11%, 9%); malignancy (12%, 14%); recent surgery (19%, 16%); pregnancy (17%, 16%) and obesity (11%, 12%). Prophylaxis advice given in June 2007 versus September 2008: in-flight exercise (34%, 42%); Hydration (30%, 34%); medical consultation prior to flying (20%, 18%); graduated compression stockings (13%, 12%); aspirin (<1%, <1%) and heparin (5%, 7%). Conclusions The majority of world airlines continue to fail to warn of the risk of traveller's thrombosis or offer appropriate advice. Alerting passengers at risk gives them an opportunity to seek medical advice before flying.


2021 ◽  
Vol 17 (4) ◽  
pp. 23-31
Author(s):  
O.A. Halushko ◽  
O.A. Loskutov ◽  
M.A. Trishchynska ◽  
I.A. Kuchynska ◽  
M.V. Boliuk

Background. Since December 2019, the new coronavirus disease 2019 (COVID-19) has been marching confidently and aggressively across the planet. On March 11, 2020, the World Health Organization has declared COVID-19 a pandemic. Among the risk factors for the development and severe course of COVID-19, there are old age, arterial hypertension, diabetes mellitus, chronic obstructive pulmonary disease, cardiovascular and cerebrovascular diseases. However, recently, based on the epidemiological data obtained, diabetes mellitus is no longer considered a risk factor for infection with SARS-CoV-2, but the presence of concomitant diabetes is associated with a more severe course of COVID-19 and deterioration in treatment outcomes. What is the reason for the complicated course of COVID-19 in patients with diabetes mellitus? The need to answer this question led to the conduction of this study. The purpose was to determine the causes of complicated course of COVID-19 in patients with diabetes mellitus. Material and methods. We searched for publications using the search engines PubMed and Google Scholar by keywords: COVID-19, diabetes mellitus, hyperglycemia, carbohydrate metabolism disorders, complications. Results. The review of the scientific literature considers the main causes and pathogenetic mechanisms of COVID-19 complications in patients with diabetes mellitus. Groups of factors that worsen the course of the diseases have been identified, and it has been proven that current treatment of COVID-19 in patients with diabetes mellitus should take into account all available risk factors and include a multidisciplinary team approach involving specialists in emergency medicine, endocrinology, infectious diseases, respiratory support, nutritional science and rehabilitation. Conclusions. The main causes that worsen the course of COVID-19 in patients with diabetes mellitus are: 1) features of diabetes itself and the interaction of diabetes and COVID-19; 2) the impact of certain drugs used in the treatment of both diseases; 3) shortcomings in the organization of treatment and care of patients. The main factor that is crucial in the management of these patients is the normalization of blood glucose levels and carbohydrate balance, which must be achieved by all possible means.


2021 ◽  
Author(s):  
Michał Zacharko ◽  
Robert Cichowicz ◽  
Marcin Andrzejewski ◽  
Paweł Chmura ◽  
Edward Kowalczuk ◽  
...  

Abstract The aim of the study was to determine the impact of air quality – analyzed on the basis of the model of integrating three types of air pollutants (ozone – O3, particulate matter - PM, nitrogen dioxide – NO2) – on the physical activity of soccer players. Study material consisted of 8927 individual match observations of 461 players competing in the German Bundesliga during the 2017/2018 and 2018/2019 domestic seasons. The measured indices included players’ physical activities: total distance (TD) and high intensity effort (HIE). Statistical analysis showed that with increasing levels of air pollution, both TD (F = 13.900(3); p = 0.001) and HIE (F = 8.060(3); p = 0.001) decrease significantly. The worsening of just one parameter of air pollution results in a significant reduction in performance. This is important information as air pollution is currently a considerable problem for many countries. Improving air quality during training sessions and sports competitions will result in better well-being and sporting performance of athletes, and will also help protect athletes from negative health effects caused by air pollution.


2021 ◽  
Author(s):  
Ilaria D'Elia ◽  
Gino Briganti ◽  
Lina Vitali ◽  
Antonio Piersanti ◽  
Gaia Righini ◽  
...  

Abstract. Air pollution harms human health and the environment. Several regulatory efforts and different actions have been taken in the last decades by authorities. Air quality trend analysis represents a valid tool in assessing the impact of these actions taken both at national and local levels. This paper presents for the first time the capability of the Italian national chemical transport model, AMS-MINNI, in capturing the observed concentration trends of three air pollutants, NO2, inhalable particles having diameter less than 10 micrometres (PM10) and O3, in Italy over the period 2003–2010. We firstly analyse the model performance finding it in line with the state of the art of regional models applications. The modelled trends result in a general significant downward trend for the three pollutants and, in comparison with observations, the values of the simulated slopes show the same magnitude for NO2 (in the range −3.0 ÷ −0.5 ug m−3 yr−1), while a smaller variability is detected for PM10 (−1.5 ÷ −0.5 ug m−3 yr−1) and O3-maximum daily 8-hour average concentration (−2.0 ÷ −0.5 ug m−3 yr−1). As a general result, we find a good agreement between modelled and observed trends; moreover, the model allowed to extend both the spatial coverage and the statistical significance of pollutants' concentrations trends with respect to observations, in particular for NO2. We also conduct a qualitative attempt to correlate the temporal concentration trends to meteorological and emission variability. Since no clear tendency in yearly meteorological anomalies (temperature, precipitation, geopotential height) was observed for the period investigated, we focus the discussion of concentrations trends on emissions variations. We point out that, due to the complex links between precursors emissions and air pollutants concentrations, emission reductions do not always result in a corresponding decrease in atmospheric concentrations, especially for those pollutants that are formed in the atmosphere such as O3 and the major fraction of PM10. These complex phenomena are still uncertain and their understanding is of the utmost importance in planning future policies for reducing air pollution and its impacts on health and ecosystems.


2020 ◽  
Author(s):  
Yichen Chen ◽  
Xiaopan Li ◽  
Hanyi Chen ◽  
Lianghong Sun ◽  
Tao Lin ◽  
...  

Abstract Background: Air pollution is a severe and dangerous public health problem. However, the effect of ambient gaseous air pollution exposure on years of life lost (YLL) attributable to chronic obstructive pulmonary disease (COPD) mortality has not been quantitatively verified.Methods: We collected the data of 12,781 COPD deaths and ambient gaseous air pollutants, including sulfur dioxide (SO2), nitrogen dioxide (NO2), Carbon monoxide (CO), and ozone (O3), during the years 2013-2019 in the Shanghai Pudong New Area (PNA). Then we performed a time-stratified case-crossover study combined with a distributed lag nonlinear model (DLNM) to estimate the impact of those air pollutants on daily COPD deaths counts and YLL. The confounders including long-term trend and meteorological factors have been controlled for, and effects of age and educational attainment as effect modifiers have also been evaluated.Results: During the 2013-2019 time frame, increases of 10μg/m3 in SO2 and NO2 were associated with a 4.93% (95% CI: 1.47%, 8.50%) and 1.47% (95% CI: 0.14%, 2.82%) in daily COPD death counts at lag0-1day, respectively, a 2.52 (95% CI: 0.31, 4.72) YLL increase and 0.85 (95% CI: 0.01, 1.68) YLL increase at lag0-1day, respectively. A 1mg/m3 increase in CO was associated with a 9.46% (95% CI: 0.40%, 19.35%) at lag0 increase in daily COPD death counts. No significant impact from O3 on both daily COPD deaths counts and YLL (P>0.05). The impact of gaseous air pollutants on the daily COPD death count and YLL were significant in populations of older adults and the lower educated population, while an insignificant effect was observed in the younger population and higher educated population. The YLL due to COPD related to SO2 and CO for the lower educated population was significantly higher than those for the higher educated population.Conclusion: Reducing specific gaseous air pollutants will help to control COPD deaths and improve the population’s life expectancy.


2020 ◽  
Author(s):  
Ying Zhu ◽  
Jia Chen ◽  
Xiao Bi ◽  
Gerrit Kuhlmann ◽  
Ka Lok Chan ◽  
...  

Abstract. In many cities around the world the overall air quality is improving, but at the same time nitrogen dioxide (NO2) trends show stagnating values and in many cases could not be reduced below air quality standards recommended by the World Health Organization (WHO). Many large cities have built monitoring stations to continuously measure different air pollutants. While most stations follow defined rules in terms of measurement height and distance to traffic emissions, the question remains, how representative are those point measurements for the city-wide air quality. The question of the spatial coverage of a point measurement is important because it defines the area of influence and coverage of monitoring networks, determines how to assimilate monitoring data into model simulations or compare to satellite data with a coarser resolution, and is essential to assess the impact of the acquired data on public health. In order to answer this question, we combined different measurement data sets consisting of path averaging remote sensing data and in-situ point measurements in stationary and mobile setups from a measurement campaign that took place in Munich, Germany in June and July 2016. We developed an algorithm to strip temporal diversity and spatial patterns in order to construct a consistent NO2 pollution map for Munich. Continuous long-path differential optical absorption spectroscopy (LP DOAS) measurements were complemented with mobile cavity-enhanced (CE) DOAS, chemiluminescence (CL) and cavity attenuated phase shift (CAPS) instruments and were compared to monitoring stations and satellite data. In order to generate a consistent composite map, the LP DOAS diurnal cycle has been used to normalize for the time of the day dependency of the source patterns, so that spatial and temporal patterns can be analyzed separately. The resulting concentration map visualizes pollution hot spots at traffic junctions and tunnel exits in Munich, providing insights into the strong spatial variations. On the other hand, this database is beneficial to the urban planning and the design of control measures of environment pollution. Directly comparing on-street mobile measurements in the vicinity of monitoring stations resulted in a difference of 48 %. For the extrapolation of the monitoring station data to street level, we determined the influence of the measuring height and distance to the street. We found that a measuring height of 4m, at which the Munich monitoring stations measure, results in 16 % lower average concentrations than a measuring height of 1.5 m, which is the height of the inlet of our mobile measurements and a typical pedestrian breathing height. The horizontal distance of most stations to the center of the street of about 6 m also results in an average reduction of 13 % compared to street level concentration. A difference of 21 % in the NO2 concentrations remained, which could be an indication that city-wide measurements are needed for capturing the full range and variability of concentrations for assessing pollutant exposure and air quality in cities.


Sign in / Sign up

Export Citation Format

Share Document