The activity of thyme essential oil against Acinetobacter spp.

2011 ◽  
Vol 6 (3) ◽  
pp. 405-413 ◽  
Author(s):  
Monika Łysakowska ◽  
Andrzej Denys ◽  
Monika Sienkiewicz

AbstractThe aim of this work was to investigate the antimicrobial properties of thyme essential oil against clinical multiresistant strains of Acinetobacter spp. The antibacterial activity of oil was tested against standard and clinical bacterial strains of Acinetobacter genus. The agar diffusion method was used to check the inhibition of microbial growth at various concentrations of the oil from Thymus vulgaris. Susceptibility testing to antibiotics and chemotherapeutics was prepared using the disc-diffusion method. Identification of bacterial strains was carried out with the Vitek system and confirmed by PCR for Acinetobacter baumanii gyrB gene. The results of experiments showed that the oil from T. vulgaris exhibited an extremely strong activity against all of the clinical strains of Acinetobacter. Thyme oil demonstrated a very good efficacy against multiresistant strains of tested bacteria. Essential oils seems to be an excellent alternative for synthetic preparations and that is reason for an extensive assessment of their antimicrobial activity.

2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Olga Lobos ◽  
Carlos Padilla ◽  
Andrea Barrera ◽  
Zoraya Lopez-Cabana ◽  
Claudia Mora ◽  
...  

Background: Laurelia sempervirens, better known as Chilean laurel, is endemic to Chile. For many years, the leaves and branches of this plant have been popularly used as medicinal agents. However, its antifungal properties and antibiofilm activity against bacterial strains have not been studied. Objectives: To determine antibiofilm and antimicrobial properties of Chilean laurel essential oil on human pathogenic strains. Methods: The antifungal and antibacterial activities of Chilean laurel essential oil were evaluated through the agar diffusion method, and its minimum inhibitory concentration was determined using the standard microdilution method. Antibiofilm activity was examined based on the formation and disruption of bacterial biofilms and evidenced by the crystal violet technique. Results: The results showed important antimicrobial activity against human pathogenic yeast strains, and the minimum inhibitory concentration of Chilean laurel essential oil was 64 µg.mL-1 against Candida albicans. The essential oil also showed an important inhibitory effect against the formation of biofilms produced by Staphylococcus aureus, since it inhibited the formation of biofilms by over 50% at the concentration of 64 µg.mL-1. With increasing the essential oil’s concentration to 128 µg.mL-1, its antibiofilm activity increased by 60%. Conclusions: These results approve the domestic use of Chilean laurel essential oil as an antimicrobial agent and provide knowledge about the antibiofilm and antifungal properties of L. sempervirens.


2021 ◽  
Vol 29 (2) ◽  
pp. 73-77
Author(s):  
H. Fenghour ◽  
H. Bouabida ◽  
D. Dris ◽  
M. Houhamdi

Essential oils are secondary plant metabolites and have many therapeutic properties. The aim of our study is to determine the antibacterial effect of the essential oils of two plants cultivated in a semi-arid region located in the Northeast of Algeria (Tebessa), Eucalyptus camaldulensis (Myrtaceae) and Artemisia herba alba (Asteraceae). The yield of essential oils of the two plants were 1.45 ± 0.026 and 1.21 ± 0.061 g/100 g of the dry matter of the aerial part respectively. The test of the antibacterial effect is based on the diffusion method on solid medium (sensitivity), this method allows us to determine the susceptibility or resistance of an organism vis-à-vis the sample studied. Our study reveals that E. camaldulensis essential oil had very strong activity on all bacterial strains tested, except on Pseudomonas aeruginosa and Enterococcus faecalis for which there was no inhibitory effect. However, A. herba alba essential oil had very strong activity on all bacterial strains tested except on Pseudomonas aeruginosa. The MIC of Artemisia essential oil ranged between 0.08 and 1.57 µL/mL, with the lowest activity for S. aureus and P. mirabilis (1.57 µL/mL) and the highest activity was observed against E. feacalis, E. coli, and K. pneumonia (0.09 µL/mL). The MIC of the second plant EO ranged between 0.08 and 0.36 µL/mL, with the lowest activity for P. mirabilis (0.36 µL/mL) and the highest one was observed against S. saprophyticus and E. coli (0.08 µL/mL). Statistical analysis shows that the two plants have the same efficacy against S. saprophyticus while E. faecalis, K. pneumoniae and P. mirabilis species are affected more by the essential oil of A. herba alba. While, E. camaldulensis has a higher efficiency than that of A. herba alba on the species: S. aureus and E. coli. Therefore, the essential oils of E. camaldulensis and A. herba alba suggests avenues for further non clinical and clinical studies.


2020 ◽  
pp. 1-10
Author(s):  
Ana Isabela Pianowski Salussoglia ◽  
Clovis Wesley Oliveira de Souza ◽  
Eduardo Hiromitsu Tanabe ◽  
Mônica Lopes Aguiar

2019 ◽  
Vol 2 (1) ◽  
pp. 19
Author(s):  
Murni Halim

A study was carried out to screen for phytochemical constituents and assess the antioxidant and antimicrobial activities of Senna alata and Senna tora leaf extracts. The leaves were first dried at room temperature and 50°C in an oven prior to solvent extraction using ethanol and methanol. The in-vitro qualitative assays showed that both S. alata and S. tora leaf extracts contained bioactive and secondary metabolites components such as tannins, steroids, saponin, terpenoids, glycosides, flavonoids and phenols. The antioxidant activity and capacity test were carried out by conducting free radical of 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and Ferric reduction antioxidant plasma (FRAP) assays. Both assays showed S. tora leaf extract has higher antioxidant capacity than S. alata leaf extract. The efficacy of these leaf extracts were tested against skin pathogens through agar well diffusion method. S. alata extract showed an inhibition zone (1.15 – 1.59 mm) against Pseudomonas aeruginosa while S. tora extracts exhibited a strong antimicrobial activity against S. epidermidis (inhibition zone of 12 – 16.94 mm) followed by P. aeruginosa (inhibition zone of 1 – 1.59 mm). Nonetheless, no inhibition zone was observed for S. aureus by both leaf extracts. The phytochemicals and antioxidant constituents as well as inhibitory potential on skin pathogens possessed by S. alata and S. tora leave highlighted their potential utilization in the development of natural drugs or cosmetics to treat skin related diseases or infections.


2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Giovanna Pesavento ◽  
Valentina Maggini ◽  
Isabel Maida ◽  
Antonella Lo Nostro ◽  
Carmela Calonico ◽  
...  

Essential oils (EOs) are known to inhibit the growth of a wide range of microorganisms. Particularly interesting is the possible use of EOs to treat multidrug-resistant cystic fibrosis (CF) pathogens. We tested the essential oil (EO) from Origanum vulgare for in vitro antimicrobial activity, against three of the major human opportunistic pathogens responsible for respiratory infections in CF patients; these are methicillin-resistant Staphylococcus aureus, Stenotrophomonas maltophilia and Achromobacter xylosoxidans. Antibiotic susceptibility of each strain was previously tested by the standard disk diffusion method. Most strains were resistant to multiple antibiotics and could be defined as multi-drug-resistant (MDR). The antibacterial activity of O. vulgare EO (OEO) against a panel of 59 bacterial strains was evaluated, with MIC and MBC determined at 24, 48 and 72 hours by a microdilution method. The OEO was effective against all tested strains, although to a different extent. The MBC and MIC of OEO for S. aureus strains were either lower or equal to 0.50%, v/v, for A. xylosoxidans strains were lower or equal to 1% and 0.50%, v/v, respectively; and for S. maltophilia strains were lower or equal to 0.25%, v/v. The results from this study suggest that OEO might exert a role as an antimicrobial in the treatment of CF infections.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2223 ◽  
Author(s):  
Elaine Pereira dos Santos ◽  
Pedro Henrique Medeiros Nicácio ◽  
Francivandi Coêlho Barbosa ◽  
Henrique Nunes da Silva ◽  
André Luís Simões Andrade ◽  
...  

Film-forming emulsions and films, prepared by incorporating different concentrations of clove essential oil (CEO) and melaleuca essential oil (MEO) into chitosan (CS) were obtained and their properties were evaluated. Film-forming emulsions were characterized in terms of qualitative assessment, hydrogen potential and in vitro antibacterial activity, that was carried by the agar diffusion method, and the growth inhibition effects were tested on the Gram-positive microorganism of Staphylococcus aureus, Gram-negative microorganisms of Escherichia coli, and against isolated fungi such as Candida albicans. In order to study the impact of the incorporation of CEO and MEO into the CS matrix, the appearance and thickness of the films were evaluated. Furthermore, Fourier transform infrared spectroscopy (FTIR), contact angle measurements, a swelling test, scanning electron microscopy and a tensile test were carried out. Results showed that the film-forming emulsions had translucent aspect with cloudy milky appearance and showed antimicrobial properties. The CEO had the highest inhibition against the three strains studied. As regards the films’ properties, the coloration of the films was affected by the type and concentration of bioactive used. The chitosan/CEO films showed an intense yellowish coloration while the chitosan/MEO films presented a slightly yellowish coloration, but in general, all chitosan/EOs films presented good transparency in visible light besides flexibility, mechanical resistance when touched, smaller thicknesses than the dermis and higher wettability than chitosan films, in both distilled water and phosphate-buffered saline (PBS). The interactions between the chitosan and EOs were confirmed by. The chitosan/EOs films presented morphologies with rough appearance and with EOs droplets in varying shapes and sizes, well distributed along the surface of the films, and the tensile properties were compatible to be applied as wound dressings. These results revealed that the CEO and MEO have a good potential to be incorporated into chitosan to make films for wound-healing applications.


2011 ◽  
Vol 6 (2) ◽  
pp. 1934578X1100600
Author(s):  
Andrés F. Peralta-Bohórquez ◽  
Clara Quijano-Célis ◽  
Mauricio Gaviria ◽  
Consuelo Vanegas-López ◽  
Jorge A. Pino

The chemical composition of the volatile compounds from the leaves of Lantana canescens Kunth (Verbenaceae) and L. lopez-palacii Moldenke grown in Colombia were analyzed by GC and GC/MS. One hundred and thirty-nine volatile compounds were identified in L. canescens, of which the major ones were β-caryophyllene (13.5%), germacrene D (10.3%) and 1-octen-3-ol (8.4%). In the oil obtained from L. lopez-palacii, eighty-three compounds were identified, of which the most prominent were 1-octen-3-ol (24.4%) and β-caryophyllene (15.2%). The in vitro antibacterial activity of the L. lopez-palacii essential oil was studied against three bacterial strains using the disc diffusion method. No antimicrobial activity was found against Escherichia coli, Enterobacter sakazakii and Listeria monocytogenes.


2019 ◽  
Vol 44 (3) ◽  
pp. 388-396
Author(s):  
Ashfaq Ahmad Khan ◽  
Muhammad Shoaib Amjad ◽  
Saboon

Abstract Background Essential oils are chemical products produced by odoriferous glands from a variety of plants. These essential oil have many health benefits i.e. antiseptic, anti-inflammatory and antimicrobial activities. So due to these medicinal properties present study was designed to analyze essential oil of Thymus vulgaris and Mentha arvensis for their chemical composition and biological activities. Materials and methods Essential oil from these plants were extracted by hydrodistillation method, and analyzed by GC-MS. To test the microbial activity of these oil disk diffusion method and micro wells method were used. For free radical scavenging DPPH assay was used. However total phenolic content was measured by colorimetric method. Results The GC-MS analysis of T. vulgaris oil showed the presence of 47 chemical compounds among which thymol, terpinene, p-cymene and carvacrol were major. However essential oil of M. arvensis showed the presence of 28 constituents, among which the Menthone, Menthol, Isomenthone, Eucalyptol, neo-Menthol, cis-Piperitone oxide, Linalool, Thymol, Limonene, and α-Phellandrene were major. Essential oil from both these plant tested for antimicrobial activity showed that the T. vulgaris oil was effective against seven bacterial strains and the essential oil of M. arvensis was effective against six bacterial strain. The antioxidant activity of both samples by DPPH assay which showed positive result. Conclusion As both species showed the presence of active components, positive microbial activities, and antioxidant activity so, research should be carried on for further biological activities of these oil for betterment of living beings.


2009 ◽  
Vol 64 (1-2) ◽  
pp. 20-24 ◽  
Author(s):  
Fereshteh Eftekhar ◽  
Fereshteh Raei ◽  
Morteza Yousefzadi ◽  
Samad Nejad Ebrahimi ◽  
Javad Hadian

The aerial parts of Satureja spicigera were collected at full flowering stage at Gazvin, Iran. The essential oil was isolated by hydrodistillation and analyzed by a combination of capillary GC and GC-MS. Fourteen compounds were identified, of which carvacrol (53.74%) and thymol (36.03%) were the main constituents, representing 99.12% of the total oil. The in vitro antibacterial activity of the essential oil was determined against six ATCC standard bacterial strains (Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) using disc diffusion as well as measurement of minimum inhibitory concentrations. The disc diffusion results and MIC values indicated high inhibitory activity against the test bacteria. The most susceptible organisms were the Gram-positive B. subtilis and S. aureus followed by E. faecalis, usually resistant to most common antibiotics. Among the Gram-negative bacteria, E. coli and K. pneumoniae were highly sensitive to the different oil concentrations in the disc diffusion method. Finally, P. aeruginosa, a highly resistant organism to most antibiotics, showed moderate susceptibility to Satureja spicigera essential oil.


2017 ◽  
Vol 76 (1) ◽  
pp. 64-71 ◽  
Author(s):  
Sabina Anžlovar ◽  
Matevž Likar ◽  
Jasna Dolenc Koce

AbstractPlant essential oils are potential food preservatives due to their inhibitory effects on bacterial and fungal growth. Antifungal activities of common thyme (Thymus vulgaris) essential oil were tested against endophytic fungi grown from wheat (Triticum aestivum) grain, molecularly identified as Alternaria alternata, Alternaria infectoria, Aspergillus flavus, Epicoccum nigrum and Fusarium poae. Their susceptibility to thyme essential oil was tested in vitro, and ranged from fungicidal to fungistatic. Treatment combinations of prior grain surface sterilization with hypochlorite and direct/indirect treatment with the essential oil were used, which showed strong effects on infection incidence and germination. Direct soaking of the wheat grain in the essential oil was particularly effective, but inhibited both fungal growth and seed germination. In contrast, indirect treatment of the grain with the essential oil (i.e., fumigation) inhibited fungal growth without negative effects on seed germination. In combination with grain surface sterilization with hypochlorite, indirect treatment with thyme essential oil reduced these fungal infections even more. Since thyme essential oil is safe for plants and consumers, in the form of fumigation it could be used as a protectant of storage containers for wheat grain intended for sowing and for food production.


Sign in / Sign up

Export Citation Format

Share Document