Intranasal insulin affects adenyl cyclase system in rat tissues in neonatal diabetes

2012 ◽  
Vol 7 (1) ◽  
pp. 33-47 ◽  
Author(s):  
Alexander Shpakov ◽  
Oksana Chistyakova ◽  
Kira Derkach ◽  
Irina Moyseyuk ◽  
Vera Bondareva

AbstractThe changes in hormone-regulated adenylyl cyclase (AC) signaling system implicated in control of the nervous, cardiovascular and reproductive systems may contribute to complications of diabetes mellitus (DM). We investigated the functional state of AC system in the brain, myocardium, ovary and uterus of rats with neonatal DM and examined the influence of intranasally administered insulin on the sensitivity of this system to biogenic amines and polypeptide hormones. The regulatory effects of somatostatin and 5-HT1BR-agonist 5-nonyloxytryptamine acting via Gi protein-coupled receptors were significantly decreased in DM and partially restored in insulin-treated rats. The effects of hormones, activators of AC, are changed in tissue- and receptorspecific manner, and intranasal insulin restored the effects rather close to the level in control. In insulin-treated non-diabetic rats, AC stimulating effects of isoproterenol and relaxin in the myocardium and of human chorionic gonadotropin in the ovaries were decreased, while the effects of hormones, inhibitors of AC, were increased. These data indicate that with intranasal insulin, Gi protein-mediated signaling pathways continue to gain strength. The obtained data on the influence of hormones on AC system in the brain, myocardium, ovary and uterus allow looking anew into the mechanisms of therapeutic effects of intranasal insulin.

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 621
Author(s):  
Ernest Adeghate ◽  
Crystal M. D’Souza ◽  
Zulqarnain Saeed ◽  
Saeeda Al Jaberi ◽  
Saeed Tariq ◽  
...  

Nociceptin (NC) consists of 17 amino acids (aa) and takes part in the processing of learning and memory. The role of NC in the induction of endogenous antioxidants in still unclear. We examined the effect of NC on the expression of endogenous antioxidants in kidney, liver, cerebral cortex (CC), and hippocampus after the onset of diabetes mellitus, using enzyme-linked immunosorbent assay and immunohistochemistry. Exogenous NC (aa chain 1–17; 10 µg/kg body weight) was given intraperitoneally to normal and diabetic rats for 5 days. Our results showed that catalase (CAT) is present in the proximal (PCT) and distal (DCT) convoluted tubules of kidney, hepatocytes, and neurons of CC and hippocampus. The expression of CAT was significantly (p < 0.05) reduced in the kidney of normal and diabetic rats after treatment with NC. However, NC markedly (p < 0.001) increased the expression CAT in the liver and neurons of CC of diabetic rats. Superoxide dismutase (SOD) is widely distributed in the PCT and DCT of kidney, hepatocytes, and neurons of CC and hippocampus. NC significantly (p < 0.001) increased the expression of SOD in hepatocytes and neurons of CC and the hippocampus but not in the kidney. Glutathione reductase (GRED) was observed in kidney tubules, hepatocytes and neurons of the brain. NC markedly increased (p < 0.001) the expression of GRED in PCT and DCT cells of the kidney and hepatocytes of liver and neurons of CC. In conclusion, NC is a strong inducer of CAT, SOD, and GRED expression in the kidney, liver and brain of diabetic rats.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 767
Author(s):  
Courtney Davis ◽  
Sean I. Savitz ◽  
Nikunj Satani

Ischemic stroke is a debilitating disease and one of the leading causes of long-term disability. During the early phase after ischemic stroke, the blood-brain barrier (BBB) exhibits increased permeability and disruption, leading to an influx of immune cells and inflammatory molecules that exacerbate the damage to the brain tissue. Mesenchymal stem cells have been investigated as a promising therapy to improve the recovery after ischemic stroke. The therapeutic effects imparted by MSCs are mostly paracrine. Recently, the role of extracellular vesicles released by these MSCs have been studied as possible carriers of information to the brain. This review focuses on the potential of MSC derived EVs to repair the components of the neurovascular unit (NVU) controlling the BBB, in order to promote overall recovery from stroke. Here, we review the techniques for increasing the effectiveness of MSC-based therapeutics, such as improved homing capabilities, bioengineering protein expression, modified culture conditions, and customizing the contents of EVs. Combining multiple techniques targeting NVU repair may provide the basis for improved future stroke treatment paradigms.


2012 ◽  
Vol 1 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Mingming Huang ◽  
Lifeng Gao ◽  
Liqin Yang ◽  
Fuchun Lin ◽  
Hao Lei

2004 ◽  
Vol 380 (3) ◽  
pp. 749-756 ◽  
Author(s):  
Yong-Xin SUN ◽  
Kazuhito TSUBOI ◽  
Yasuo OKAMOTO ◽  
Takeharu TONAI ◽  
Makoto MURAKAMI ◽  
...  

Anandamide (an endocannabinoid) and other bioactive long-chain NAEs (N-acylethanolamines) are formed by direct release from N-acyl-PE (N-acyl-phosphatidylethanolamine) by a PLD (phospholipase D). However, the possible presence of a two-step pathway from N-acyl-PE has also been suggested previously, which comprises (1) the hydrolysis of N-acyl-PE to N-acyl-lysoPE by PLA1/PLA2 enzyme(s) and (2) the release of NAEs from N-acyllysoPE by lysoPLD (lysophospholipase D) enzyme(s). In the present study we report for the first time the characterization of enzymes responsible for this pathway. The PLA1/PLA2 activity for N-palmitoyl-PE was found in various rat tissues, with the highest activity in the stomach. This stomach enzyme was identified as group IB sPLA2 (secretory PLA2), and its product was determined as N-acyl-1-acyl-lysoPE. Recombinant group IB, IIA and V of sPLA2s were also active with N-palmitoyl-PE, whereas group X sPLA2 and cytosolic PLA2α were inactive. In addition, we found wide distribution of lysoPLD activity generating N-palmitoylethanolamine from N-palmitoyl-lysoPE in rat tissues, with higher activities in the brain and testis. Based on several lines of enzymological evidence, the lysoPLD enzyme could be distinct from the known N-acyl-PE-hydrolysing PLD. sPLA2-IB dose dependently enhanced the production of N-palmitoylethanolamine from N-palmitoyl-PE in the brain homogenate showing the lysoPLD activity. N-Arachidonoyl-PE and N-arachidonoyl-lysoPE as anandamide precursors were also good substrates of sPLA2-IB and the lysoPLD respectively. These results suggest that the sequential actions of PLA2 and lysoPLD may constitute another biosynthetic pathway for NAEs, including anandamide.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Kira V. Derkach ◽  
Vera M. Bondareva ◽  
Oxana V. Chistyakova ◽  
Lev M. Berstein ◽  
Alexander O. Shpakov

In the last years the treatment of type 2 diabetes mellitus (DM2) was carried out using regulators of the brain signaling systems. In DM2 the level of the brain serotonin is reduced. So far, the effect of the increase of the brain serotonin level on DM2-induced metabolic and hormonal abnormalities has been studied scarcely. The present work was undertaken with the aim of filling this gap. DM2 was induced in male rats by 150-day high-fat diet and the treatment with low dose of streptozotocin (25 mg/kg) on the 70th day of experiment. From the 90th day, diabetic rats received for two months intranasal serotonin (IS) at a daily dose of 20 μg/rat. The IS treatment of diabetic rats decreased the body weight, and improved glucose tolerance, insulin-induced glucose utilization, and lipid metabolism. Besides, it restored hormonal regulation of adenylyl cyclase (AC) activity in the hypothalamus and normalized AC stimulation byβ-adrenergic agonists in the myocardium. In nondiabetic rats the same treatment induced metabolic and hormonal alterations, some of which were similar to those in DM2 but expressed to a lesser extent. In conclusion, the elevation of the brain serotonin level may be regarded as an effective approach to treat DM2 and its complications.


2021 ◽  
Author(s):  
Priska Stahel ◽  
Changing Xiao ◽  
Avital Nahmias ◽  
Lili Tian ◽  
Gary Franklin Lewis

Abstract Plasma triglyceride-rich lipoproteins (TRL), particularly atherogenic remnant lipoproteins, contribute to atherosclerotic cardiovascular disease (ASCVD). Hypertriglyceridemia may arise in part from hypersecretion of TRLs by the liver and intestine. Here we focus on the complex network of hormonal, nutritional, and neuronal interorgan communication that regulates secretion of TRLs, and provide our perspective on the relative importance of these factors. Hormones and peptides originating from the pancreas (insulin, glucagon), gut (GLP-1, GLP-2, ghrelin, CCK, peptide YY), adipose tissue (leptin, adiponectin) and brain (GLP-1) modulate TRL secretion by receptor-mediated responses and indirectly via neural networks. In addition, the gut microbiome and bile acids influence lipoprotein secretion in humans and animal models. Several nutritional factors modulate hepatic lipoprotein secretion through effects on the central nervous system. Vagal afferent signalling from the gut to the brain and efferent signals from the brain to the liver and gut are modulated by hormonal and nutritional factors to influence TRL secretion. Some of these factors have been extensively studied and shown to have robust regulatory effects whereas others are ‘emerging’ regulators, whose significance remains to be determined. The quantitative importance of these factors relative to one another and relative to the key regulatory role of lipid availability remains largely unknown. Our understanding of the complex interorgan regulation of TRL secretion is rapidly evolving to appreciate the extensive hormonal, nutritional and neural signals emanating not only from gut and liver but also from the brain, pancreas, and adipose tissue.


Sign in / Sign up

Export Citation Format

Share Document