The effect of a leukodepletion model on the activation stage of platelets

Open Medicine ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. 181-184
Author(s):  
Miodrag Vucic ◽  
Ivan Tijanic ◽  
Nenad Govedarevic ◽  
Lana Macukanovic ◽  
Zoran Pavlovic

AbstractThe preparation of thrombocyte concentrates with filtration before storage (in-line) makes it possible to avoid the presence of mononuclear cells in the concentrate and proinflammatory cytokines. Therefore, this filtration may result with decreased activation of trombocyte receptors in vitro, which may improve therapeutic efficiancy. Methods. We compared two groups, each with 30 therapeutic doses of concentrated thrombocytes. We prepared the first group using the classic model from the buffy coat and the other with concentrated thrombocyte samples filtrated during sampling, so-called in-line, with the WBC filter Imuflex (Terumo). Mononuclear cells (MNC), thrombocyte, and erythrocyte counts in the units of concentrated thrombocytes were obtained on an automatic cell counter, and we used flow cytometry to measure the expression of surface thrombocyte receptors. The results demonstrated that the trombocytes prepared with pre-storage filtration contained a very low level of mononuclear cells and markedly reduced trombocyte receptors. Conclusion. The number of MNC and expression of surface thrombocyte receptors were markedly lower in the concentrated thrombocyte units prepared with in-line filtration. The thrombocytes prepared in this way contain fewer mononuclear cells, are of higher quality, are more functional, and may produce a better therapeutic effect in vivo.

Author(s):  
Simon Villegas-Ospina ◽  
Wbeimar Aguilar-Jimenez ◽  
Sandra M. Gonzalez ◽  
María T. Rugeles

AbstractObjective:Vitamin D (VitD) is an anti-inflammatory hormone; however, some evidence shows that VitD may induce the expression of activation markers, such as CD38 and HLA-DR. We explored its effect on the expression of these markers on CD4Materials and methods:CD38 and HLA-DR expression was measured by flow cytometry in PHA/IL-2-activated mononuclear cells cultured under VitD precursors: three cholecalciferol (10Results:Cholecalciferol at 10Conclusion:Although no significant correlations were observed in vivo in healthy subjects, VitD treatment in vitro modulated immune activation by increasing the expression of CD38 and decreasing the proliferation of HLA-DR


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3099-3099
Author(s):  
Mara N Zeissig ◽  
Duncan R Hewett ◽  
Krzysztof M Mrozik ◽  
Vasilios Panagopoulos ◽  
Monika Engelhardt ◽  
...  

Introduction:Multiple myeloma (MM) disease progression is dependent on the ability of the MM plasma cells (PC) to leave the bone marrow (BM), re-enter the peripheral blood (PB) and disseminate to other BM sites. Previous studies show that expression of CXCL12 by BM stromal cells is crucial for MM PC retention within the BM. However, the mechanisms which overcome this retention signal enabling MM PC egress and dissemination via the PB are poorly understood. Previous studies in haematopoietic progenitor cells have demonstrated that CCL3 overcomes the CXCL12 retention signal to drive mobilisation to the PB (Lord et al. Blood 1995). Here, we examined the role of the CCL3 chemokine receptor CCR1 in driving MM PC dissemination. Methods and results: Initially, we assessed the expression of CCR1 protein on CD138+CD38++CD45loCD19- PC from 28 MM, 8 MGUS and 2 SMM patients by flow cytometry. Results show CCR1 expression is significantly increased in newly diagnosed MM compared with premalignant MGUS and SMM patients (p=0.03; CCR1 MFI mean±SEM, MGUS: 53.0±33.6; SMM: 37.6±8.9 MM: 250.9±71.6). Furthermore, CCR1 expression on PB MM PC positively correlated with PB MM PC numbers (p=0.03; n=11 patients). To identify mechanistically how CCR1 may promote dissemination, the effect of CCL3 on the response to CXCL12 in human myeloma cell lines (HMCL) was assessed in vitro. The migration of RPMI-8226 and OPM2 cells was induced by CCL3 or CXCL12 chemoattractant in a transwell assay. Notably, pre-treatment of RPMI-8226 or OPM2 with CCL3 abrogated migration towards CXCL12 and blocked F-actin remodelling in response to CXCL12 in vitro. These findings suggest that CCL3 can desensitise cells to exogenous CXCL12, providing a potential mechanism facilitating loss of the CXCL12 retention signal. To confirm whether CCR1 is required for driving MM PC dissemination, homozygous CCR1 knockout (KO) cells were generated using a lentiviral CRISPR/Cas9 system in OPM2 cells. CCR1-KO OPM2 cells were confirmed to have no detectable CCR1 expression by flow cytometry and could no longer migrate towards CCL3 in vitro. Empty vector (EV) or CCR1-KO OPM2 MM PC were injected into the tibia of immune-compromised NOD-scidgamma (NSG) mice. After 4 weeks, primary tumour within the injected tibia and disseminated tumour in the PB and the contralateral tibia and femur was assessed by flow cytometry. We found that mice bearing CCR1-KO cells have a 45.5% decrease in primary tumour growth (p=0.008; % GFP+ of total mononuclear cells, EV: 77.2±17.2; CCR1-KO: 42.1±24.4), a 97.8% reduction in PB MM PC (p<0.0001; EV: 1.39±0.7; CCR1-KO: 0.03±0.046) anda 99.9% reduction in BM tumour dissemination (p<0.0001; EV: 49.5±17; CCR1-KO: 0.019±0.013), compared with controls. In a supportive study, CCR1 was expressed in the murine MM cell line 5TGM1 using lentiviral transduction. 5TGM1-CCR1 cells were confirmed to express CCR1 by qPCR and were able to migrate towards CCL3 in vitro. 5TGM1-CCR1 or EV cells were injected into the tibiae of C57BL/KaLwRij mice and allowed to initiate systemic MM disease for 3.5 weeks. Importantly, while 55% of control mice exhibited disseminated tumours, this increased to 92% with CCR1 expression (p<0.0001; n=12/group). These data suggest that CCR1 expression on MM PC may play an important role in MM PC dissemination. To determine whether therapeutic inhibition of CCR1 prevents dissemination, the effect of a small molecule CCR1 inhibitor, CCR1i, was assessed in vivo. OPM2 EV or RPMI-8226 cells were injected into the tibia of NSG mice and, after 3 days, mice were treated with CCR1i (15mg/kg) or vehicle twice daily by oral gavage for 25 days. OPM2-inoculated CCR1i-treated mice had 66.1% lower PB MM PC (p<0.0001; % GFP+ of total mononuclear cells, vehicle: 23.9±7.2; CCR1i: 8.1±3.8) and a 22.1% reduction in BM dissemination (p=0.0002; vehicle: 78.1±4.8;CCR1i: 60.8±7.1) compared with controls. Similarly, CCR1i treatment reduced BM dissemination by 59.6% in RPMI-8226 bearing mice (p<0.0001; % GFP+ of total mononuclear cells, vehicle: 0.86±0.15; CCR1i: 0.26±0.05). This suggests that CCR1 inhibition can slow tumour dissemination in vivo. Conclusion:This study identified CCR1 as a novel driver of MM PC dissemination in vivo, at least in part by overcoming the CXCL12 retention signal. Importantly, this study demonstrated for the first time that targeting CCR1 can be a viable therapeutic strategy to limit dissemination and potentially slow disease progression. Disclosures Croucher: Trovagene: Employment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2339-2339 ◽  
Author(s):  
Mariasanta Napolitano ◽  
Lucio Lo Coco ◽  
Giorgia Saccullo ◽  
Piera Stefania Arfò ◽  
Giuseppe Tarantino ◽  
...  

Abstract Background: Cryopreservation of platelets (PLTs) at -80°C with dimethyl sulfoxide (DMSO) can extend their shelf life up to 2 years. Cryopreserved PLTs (CRY-PLTs) are reported to have a greater in vivo hemostatic effect than liquid-stored PLTs. Aims of this study were: i. to evaluate the thrombin generation potential of buffy coat derived cryopreserved PLTs (CRY- BC PLT) in comparison with fresh buffy coat derived platelets concentrates; ii. to determine the efficacy and safety of CRY-PLTs transfusion in hematological patients with severe thrombocytopenia. Materials and methods: BC PLTs were obtained from 5 buffy coats and pooled. The final PLTs concentrates were leukoreduced by filtration and transferred to a 650 mL patented cryopreservation kit (Promedical ®) which allowed mixing with DMSO 25% in a closed system and following removal of supernatant without further manipulations. BC-PLTs were washed prior freezing, suspended in homologous plasma from 1 of the 5 donors to a final concentration of 200 mL and frozen at - 80°. CRY- BC PLTs were preserved at -80°C with 6% DMSO. A system of 3 accessory bags directly connected to the mother bag was adopted for the in vitro study, to avoid repeated freezing/thawing of samples. In vitro assays were performed before freezing and at 3,6 and 9 months after thawing. Before assay, CRY-BC PLT were thawed at 37°C and diluted in plasma to adjust to 300× 109/L PLTs. Fresh BC PLTs underwent the same dilution to adjust to 300 ×109/L PLTs. Thrombin generation (TGA) was tested in CRY BC-PLTs and compared to TG potential of fresh BC PLTs. TGA was triggered by the addition of 0.5 pmol/L of recombinant human tissue factor. Endogenous thrombin potential (ETP) and peak height (PH) were determined. Flow Cytometry assays for PLTs activation markers and thromboelastography were also determined on each sample. CRY-BC PLTs, separately prepared according to the above described method for in vivo study, were infused in five hematological patients with acute leukemia (AL) and severe thrombocytopenia (PLTs <10 ×109/L) participating to the trial NCT02032134.CRY-BC PLTs were transfused to control epistaxis (n=2) and for prophylaxis (n=3). Patients were observed up to 7 days after infusion and the occurrence of any side effect was registered. An increase in PLTs count was observed only in one case, under prophylaxis, but bleeding was successfully controlled or prevented in all cases. Plasma from patients transfused with CRY-BC PLTs was tested for TGA pre-treatment and 24 hours after treatment Results Fourty nine BC-PLTs from 245 healthy volunteer donors (145 males and 100 females, mean age: 48.16.±18.91) were prepared, cryopreserved and analyzed up to 9 months after storage. Cryopreserved PLTs show a good thrombin generation potential that is stably maintained up to 9 months after cryopreservation [ETP (nM min): 529.25±98.64 at T0, 558.82±114.67 at T3, at 548.57±93.38 T6 and 533.04±103.15 at T9 months, respectively; PH(nM): 132.77±44.9 at T0, 103.4±44.9 at T3, 108.0±36.7 at T6 and 132.0±44.6 at T9 months, respectively]. At TGA, fresh BC-PLTs (n=35) had a mean ETP of 760.13±130.11, PH was 138.9±40.2. Thrombin generation of CRY-BC PLTs is comparable to fresh BC-PLTs, even if slightly decreased. Infusion of CRY-BC PLT (1U) was effective in controlling mucosal bleeding (epistaxis) in two patients with AL and severe thrombocytopenia. CRY-PLT were also effective when administered for prophylaxis in 3 patients with very low platelets count secondary to chemotherapy. In vivo, thrombin generation is stably maintained up to 24 hours after infusion of 1 Unit of CRY-BC PLTs, without any adverse effect (mean ETP pre-treatment was: 414.13±160.60, 24 hours after transfusion: 326.95±152.54). CRY-BC PLTs were safe and they did not determine any thrombotic event. At flow-cytometry, CRY-BC PLTs expressed higher activation markers (CD62P,CD63) than fresh BC PLTs. CRY-BC PLTs are able to significantly decrease the time to clot formation and clot strength, as measured also by thromboelastography. CRY-BCPLTs activation/deterioration is accompanied by an effective hemostatic in vivo function. Conclusions: Cryopreserved PLTs have an enhanced hemostatic activity and a good thrombin generation potential. They are effective and safe in preventing and controlling bleeding, being available in emergency/urgency settings also for patients with acute leukemia and severe thrombocytopenia. Disclosures Reina: Promedical: Consultancy.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13022-e13022
Author(s):  
Yaya Chu ◽  
Janet Ayello ◽  
Jessica Hochberg ◽  
Carmella Van de ven ◽  
James Murphy ◽  
...  

e13022 Background: A majority of children with CD20+ L/L at relapse have a chemotherapy resistant phenotype (Cairo et al Blood, 2007; JCO, 2012). Novel, non-chemotherapy-based therapies are desperately needed for this poor risk population. NK cells play an important role in tumor surveillance post allogeneic stem cell transplantation (Beziat V et al, Leukemia, 2009) but cell number and tumor recognition limit adoptive NK cell therapy (Shereck/Cairo, PBC 2007). PBNK cells expanded with genetically engineered K562-mbIL15-41BBL cells (geK562) have been previously reported (Imai C et al, Blood. 2005). Objective: We investigated the functional activities and cytolytic effect of anti-CD20 chimeric antigen receptor (CAR+) engineered PBNK cells expanded with mK562 against CD20+ L/L both in vitro and in vivo. Methods: Peripheral blood mononuclear cells (PBMC) were expanded with mitomycin C treated geK562 cells in culture medium with 10 IU/ml IL-2 for 7 or 14 days. CD56 and CD3 expression were evaluated by flow cytometry. Retrovirus preps that express CAR+ or CAR- were generated independently. The CAR+ was constructed in a MSCV-anti-CD20BB-CD3-zeta-GFP plasmid (generously supplied by Dario Campana, MD, PhD). Expanded PBMC were transduced with retroviruses as described (Imai C et al, Blood. 2005). NK cytotoxicity was assessed by europium release assay at 2:1 E:T ratio against CD20+ Ramos. Results: CD56+CD3- PBNK cells were significantly increased compared to media alone at day7 (60.94+ 3.63% vs 8.05+0.49%, n=6, p<0.001). CD56-CD3+ PBT cells were significantly reduced compared to media alone at day 7 (22.08+2.22% vs 75.73+0.75%, n=6, p<0.001). CAR+ and CAR- retrovirus supernants infected expanded PBMC at 1%-10% range. The anti-CD20 CAR expression was further confirmed by flow cytometry and western blot. We also observe that cytotoxicity was enhanced with CAR+ PBNK compared to CAR- PBNK (41+ 1.1% vs 24.5+ 3.7%) against Ramos at E:T ratio 2:1. Conclusions: PBNK can be expanded with geK562. Anti-CD20 CAR enhances PBNK anti-tumor activity against CD20+ Ramos. Future directions include characterizing the cytotoxicity activity of engineered PBNK against L/L in vitro and survival in xenogafted mice.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rayelle Itoua Maïga ◽  
Jennifer Lemieux ◽  
Annie Roy ◽  
Carl Simard ◽  
Sonia Néron

The in vitro CD40-CD154 interaction promotes human B lymphocytes differentiation into plasma cells. Currently, CD138 is the hallmark marker enabling the detection of human plasma cells, both in vitro and in vivo; its presence can be monitored by flow cytometry using a specific antibody. We have developed a culture system allowing for the differentiation of memory B lymphocytes. In order to detect the newly formed plasma cells, we have compared their staining using five anti-CD138 monoclonal antibodies (mAbs). As a reference, we also tested human cell lines, peripheral blood mononuclear cells, and bone marrow samples. The five anti-CD138 mAbs stained RPMI-8226 cells (>98%) with variable stain index (SI). The highest SI was obtained with B-A38 mAb while the lowest SI was obtained with DL-101 and 1D4 mAbs. However, the anti-CD138 mAbs were not showing equivalent CD138+cells frequencies within the generated plasma cells. B-A38, B-B4, and MI-15 were similar (15–25%) while DL-101 mAb stained a higher proportion of CD138-positive cells (38–42%). DL-101 and B-A38 mAbs stained similar populations in bone marrow samples but differed in their capacity to bind toCD138highandCD138locell lines. In conclusion, such cellular fluctuations suggest heterogeneity in human plasma cell populations and/or in CD138 molecules.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A115-A116
Author(s):  
Emiliano Roselli ◽  
Justin Boucher ◽  
Gongbo Li ◽  
Hiroshi Kotani ◽  
Kristen Spitler ◽  
...  

BackgroundCo-stimulatory signals regulate the expansion, persistence, and function of chimeric antigen receptor (CAR) T cells. Most studies have focused on the co-stimulatory domains CD28 or 4-1BB. CAR T cell persistence is enhanced by 4-1BB co-stimulation leading to NF-κB signaling, while resistance to exhaustion is enhanced by mutations of the CD28 co-stimulatory domain.MethodsWe hypothesized that a third-generation CAR containing 4-1BB and CD28 with only PYAP signaling motif (mut06) would provide beneficial aspects of both. We designed CD19-specific CAR T cells with 4-1BB or mut06 together with the combination of both (BB06). We evaluated their immune-phenotype, cytokine secretion, real-time cytotoxic ability and polyfunctionality against CD19-expressing cells. We analyzed LCK recruitment by the different constructs by immunoblotting. We further determined their ability to control growth of Raji cells in NSG mice. Additionally, we engineered bi-specific CARs against CD20/CD19 combining 4-1BB and mut06 and performed repeated in vitro antigenic stimulation experiments to evaluate their expansion, memory phenotype and phenotypic (PD1+CD39+) and functional exhaustion. Bi-specific CAR T cells were transferred into Raji or Nalm6-bearing mice to study their ability to eradicate CD20/CD19-expressing tumors.ResultsCo-stimulatory domains combining 4-1BB and mut06 confers CAR T cells with an increased polyfunctionality and LCK recruitment to the CAR (figure 1A), after repeated-antigen stimulation these cells expanded significantly better than second-generation CAR T cells (figure 1B). A bi-specific CAR targeting CD20/CD19, incorporating 4-1BB and mut06 co-stimulation, showed enhanced antigen-dependent in vitro expansion with lower exhaustion-associated markers (figure 1C). Bi-specific CAR T cells exhibited improved in vivo anti-tumor activity with increased persistence and decreased exhaustion (figure 1D).Abstract 105 Figure 1A. pLCK is increased in h19BB06z CAR T cells and associated with the CAR. CAR T cells were stimulated with irradiated 3T3-hCD19 cells at a 10:1 E:T ratio for 24hr. Cells were lysed and CAR bound and unbound fractions were western blotted. A single-cell measure of polyfunctional strength index (PSI) of CAR T cells. B. h19BB06z CAR T cells have the highest proliferation after repeated antigen stimulations. 5x105 CAR T cells were stimulated with 1x105 irradiated 3T3-hCD19 cells. After 1 week, half of the cells were enumerated by flow cytometry and the other half was re-stimulated with 1x105 fresh irradiated 3T3-hCD19 cells. This was repeated for a total of 4 weeks. C. 5x105 CAR T cells were co-cultured with 5x105 target cells (Raji-CD19High). After 1 week half the cells were harvested enumerated and stained by flow cytometry while the other half was re-stimulated with 5x105 fresh target cells (indicated by arrows). This was repeated for a total of 4 weeks. Frequency of PD1+CD39+ cells within CD8+ CAR T cells. D. Raji-FFLuc-bearing NSG mice were treated with 1x106 CAR T cells 5 days after initial tumor cell injection. Tumor burden (average luminescence) of mice treated with bi-specific or monospecific CAR T cells, UT and tumor control. Each line represents an individual mouse. (n = 7 mice per group).ConclusionsThese results demonstrate that co-stimulation combining 4-1BB with an optimized form of CD28 is a valid approach to optimize CAR T cell function. Cells with both mono- and bi-specific versions of this design showed enhanced in vitro and in vivo features such as expansion, persistence and resistance to exhaustion. Our observations validate the approach and justify clinical studies to test the efficacy and safety of this CAR in patients.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3922-3922
Author(s):  
Marcie R. Finney ◽  
Matthew Joseph ◽  
Daniel G. Winter ◽  
Omar Masari ◽  
Margaret Kozik ◽  
...  

Abstract Recent reports have studied the use of various cell populations from bone marrow, peripheral blood and umbilical cord blood (UCB) in mediating therapeutic angiogenesis. We sought to investigate the surface phenotype of UCB derived-mononuclear cells (MNC), CD133+ cells and endothelial generating cells (EGC) using flow cytometry and in vitro functional migration studies. A murine hind-limb injury ischemia model was used to assess in vivo efficacy of the different cell populations. METHODS: Mononuclear cells were isolated by density centrifugation. CD133+ cells were isolated from UCB MNC by magnetic separation (Miltenyi). EGC were derived by adherence of the CD133- cells overnight on fibronectin-coated tissue culture plates in EGM2 media (Clonetics). Surface phenotype was determined by flow cytometry for stem cell markers, CD133 and CD34, stromal markers CD73 and CD105, KDR (VEGFR2), and the receptor for SDF-1, CXCR4. Modified Boyden chambers (Neuroprobe) were used to observe chemotactic migration of MNC, CD133, EGC or the combination of CD133 and EGC towards SDF-1 (100ng/mL) compared to control wells containing media alone. In the in vivo studies, 40 NOD.SCID mice underwent right femoral artery ligation. Mice were randomized into five study groups: Cytokines (EGM2 media, n=5), MNC (n=5), CD133 (n=5), EGC (n=7), or CD133 and EGC (1:2 ratio, n=4). Laser Doppler blood flow measurements were recorded weekly for four weeks and the ratio of ischemic/non-ischemic leg was calculated. At day 28, tissue samples were harvested for histological studies. RESULTS: Surface phenotype by flow cytometry showed an average purity of 78.67% +/− 2.41% for the selection of CD133. In addition, an enhancement of the expression of CXCR4 was seen in the EGC population after overnight exposure to fibronectin and EGM2 media. Surface Phenotype of UCB MNC, CD133 and EGC MNC CD133 EGC CD34 4.03 87.42 3.40 CD133 3.19 78.67 5.06 CD73 5.07 N/A 7.15 CD105 6.74 22.74 33.78 KDR 7.14 3.59 37.65 CXCR4 28.54 8.66 64.57 The in vitro functional migration assays showed increased migration of MNC, EGC, and CD133 with EGC to SDF-1, where the CD133 cells alone showed no increased migration compared to control media. In the in vivo murine model of hind-limb ischemia, the blood flow ratio of ischemic/non-ischemic limb was used to estimate the rate of blood flow recovery. The rates of blood flow recovery were 0.0198 (CD133), 0.02 (CD133 and EGC), 0.0163 (MNC), 0.016 (EGC) and 0.0123 (cytokines). The rates were significantly different between CD133 and cytokines (p=0.011) and between CD133 and EGC compared to cytokines (p=0.011). The difference between MNC and cytokines (p=0.156) and between EGC and cytokines (p=0.176) was not significant. Histological studies are ongoing. CONCLUSION: Surface phenotype of UCB-derived MNC, CD133, and EGC were compared by flow cytometry. The in vitro functional chemotactic capacity toward SDF-1 of these cell types was determined by migration assays. The infusion of CD133+ or the combination of CD133 and EGC cells augmented the rate of blood flow recovery in the in vivo murine hind-limb model of ischemia compared to the crude MNC prep or the ECG alone.


2012 ◽  
Vol 112 (5) ◽  
pp. 911-917 ◽  
Author(s):  
Walter A. Zin ◽  
Ana G. L. S. Silva ◽  
Clarissa B. Magalhães ◽  
Giovanna M. C. Carvalho ◽  
Douglas R. Riva ◽  
...  

Environmentally relevant doses of inhaled diesel particles elicit pulmonary inflammation and impair lung mechanics. Eugenol, a methoxyphenol component of clove oil, presents in vitro and in vivo anti-inflammatory and antioxidant properties. Our aim was to examine a possible protective role of eugenol against lung injuries induced by diesel particles. Male BALB/c mice were divided into four groups. Mice received saline (10 μl in; CTRL group) or 15 μg of diesel particles DEP (15 μg in; DIE and DEUG groups). After 1 h, mice received saline (10 μl; CTRL and DIE groups) or eugenol (164 mg/kg; EUG and DEUG group) by gavage. Twenty-four hours after gavage, pulmonary resistive (ΔP1), viscoelastic (ΔP2) and total (ΔPtot) pressures, static elastance (Est), and viscoelastic component of elastance (ΔE) were measured. We also determined the fraction areas of normal and collapsed alveoli, amounts of polymorpho- (PMN) and mononuclear cells in lung parenchyma, apoptosis, and oxidative stress. Est, ΔP2, ΔPtot, and ΔE were significantly higher in the DIE than in the other groups. DIE also showed significantly more PMN, airspace collapse, and apoptosis than the other groups. However, no beneficial effect on lipid peroxidation was observed in DEUG group. In conclusion, eugenol avoided changes in lung mechanics, pulmonary inflammation, and alveolar collapse elicited by diesel particles. It attenuated the activation signal of caspase-3 by DEP, but apoptosis evaluated by TUNEL was avoided. Finally, it could not avoid oxidative stress as indicated by malondialdehyde.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alessio De Magis ◽  
Melanie Kastl ◽  
Peter Brossart ◽  
Annkristin Heine ◽  
Katrin Paeschke

Abstract Background Nucleic acids can fold into non-canonical secondary structures named G-quadruplexes (G4s), which consist of guanine-rich sequences stacked into guanine tetrads stabilized by Hoogsteen hydrogen bonding, π-π interactions, and monovalent cations. G4 structure formation and properties are well established in vitro, but potential in vivo functions remain controversial. G4s are evolutionarily enriched at distinct, functional genomic loci, and both genetic and molecular findings indicate that G4s are involved in multiple aspects of cellular homeostasis. In order to gain a deeper understanding of the function of G4 structures and the trigger signals for their formation, robust biochemical methods are needed to detect and quantify G4 structures in living cells. Currently available methods mostly rely on fluorescence microscopy or deep sequencing of immunoprecipitated DNA or RNA using G4-specific antibodies. These methods provide a clear picture of the cellular or genomic localization of G4 structures but are very time-consuming. Here, we assembled a novel protocol that uses the G4-specific antibody BG4 to quantify G4 structures by flow cytometry (BG-flow). Results We describe and validate a flow cytometry-based protocol for quantifying G4 levels by using the G4-specific antibody BG4 to label standard cultured cells (Hela and THP-1) as well as primary cells obtained from human blood (peripheral blood mononuclear cells (PBMCs)). We additionally determined changes in G4 levels during the cell cycle in immortalized MCF-7 cells, and validated changes previously observed in G4 levels by treating mouse macrophages with the G4-stabilizing agent pyridostatin (PDS). Conclusion We provide mechanistic proof that BG-flow is working in different kinds of cells ranging from mouse to humans. We propose that BG-flow can be combined with additional antibodies for cell surface markers to determine G4 structures in subpopulations of cells, which will be beneficial to address the relevance and consequences of G4 structures in mixed cell populations. This will support ongoing research that discusses G4 structures as a novel diagnostic tool.


2021 ◽  
Vol 12 ◽  
Author(s):  
Despoina T. Florou ◽  
Athanasios Mavropoulos ◽  
Efthymios Dardiotis ◽  
Vana Tsimourtou ◽  
Vasileios Siokas ◽  
...  

IntroductionLimited data from clinical trials in multiple sclerosis (MS) reported that minocycline, a widely used antibiotic belonging to the family of tetracyclines (TCs), exerts a beneficial short-lived clinical effect A similar anti-inflammatory effect of minocycline attributed to a deviation from Th1 to Th2 immune response has been reported in experimental models of MS. Whether such an immunomodulatory mechanism is operated in the human disease remains largely unknown.AimTo assess the in vitro immunomodulatory effect of tetracyclines, and in particular minocycline and doxycycline, in naïve and treated patients with MS.Material and MethodsPeripheral blood mononuclear cells from 45 individuals (35 MS patients, amongst which 15 naïve patients and 10 healthy controls, HCs) were cultured with minocycline or doxycycline and conventional stimulants (PMA/Ionomycin or IL-12/IL-18). IFN-γ and IL-17 producing T-, NK- and NKT cells were assessed by flow cytometry. The effect of TCs on cell viability and apoptosis was further assessed by flow cytometry with Annexin V staining.ResultsBoth tetracyclines significantly decreased, in a dose dependent manner, IFN-γ production in NKT and CD4+ T lymphocytes from MS patients (naïve or treated) stimulated with IL-12/IL-18 but did not decrease IFN-γ producing CD8+ T cells from naive MS or treated RRMS patients. They also decreased IL-17+ T and NKT cells following PMA and Ionomycin-stimulation. Tetracyclines did not affect the viability of cell subsets.ConclusionTetracyclines can in vitro suppress IFN-γ and IL-17- producing cells from MS patients, and this may explain their potential therapeutic effect in vivo.


Sign in / Sign up

Export Citation Format

Share Document