scholarly journals Aphanocladium album by via sub-irrigation in the control of Pyrenochaeta lycopersici and Meloidogyne incognita on tomato in a plastic-house

2008 ◽  
Vol 45 (3) ◽  
pp. 137-142 ◽  
Author(s):  
N. Sasanelli ◽  
F. Ciccarese ◽  
I. Papajová

AbstractTwo experiments were carried out to assess the efficacy of different chemicals (azoxystrobin, fosthiazate, metham-sodium) and of the chitinolytic fungus Aphanocladium album (isolate MX-95), that could be alternatives to methyl bromide, against the soil borne pathogen Pyrenochaeta lycopersici and the root-knot nematode Meloidogyne incognita on tomato in a plastic house in southern Italy. In the first trial, the treatments were azoxystrobin (1.25 l a.i. /ha), fosthiazate (1.5 l a.i. /ha) and biological control agent Aphanocladium album isolate MX-95 (2.5 l/plot at 2×107 CFU/ml; plot surface 96 m2). In the second experiment, treatments were metham-sodium (1000 l c.p./ha) and A. album (5 l/plot at 1×107 CFU/ml). In both trials, chemicals and the fungus were applied by via sub-irrigation. Satisfactory control of the corky root and the root-knot nematode attack and a significant yield increase were obtained by application of azoxystrobin, fosthiazate and metham-sodium. A significant reduction of M. incognita soil population density occurred in plots treated with A. album. Also, high positive correlations were found between the symptoms caused on tomato roots by M. incognita and P. lycopersici.

Nematology ◽  
2013 ◽  
Vol 15 (6) ◽  
pp. 747-757 ◽  
Author(s):  
Satyandra Singh

A 2-year field study was conducted to develop an eco-friendly field application method for controlling root-knot disease of eggplant (Solanum melongena). The test sites were heavily infested with the root-knot nematode, Meloidogyne incognita. The efficacy of neem cake (1.5 t ha−1), talc-based preparations of Pseudomonas fluorescens (10 kg ha−1) and Trichoderma harzianum (10 kg ha−1) as soil application and seed treatment (10 g (kg seed)−1) were tested to develop an integrated nematode management module against M. incognita infecting eggplant. Neem cake, P. fluorescens and T. harzianum alone and in combinations significantly reduced the incidence of root-knot disease of eggplant. Fresh and dry weight of shoots were higher in the plant where neem cake, P. fluorescens and T. harzianum had been applied, than in both M. incognita-infected plants and other treatments. The best protection of disease, in terms of reduction in number of galls (81%) and reproductive factor (Pf∕Pi < 0.5) of the nematode, was achieved through this treatment. It also enhanced yield of eggplant by up to 70%. It is suggested that integrated approach using organic amendment with bio-control agents to manage root-knot disease of eggplant under natural infestation is not only environmentally friendly but also more beneficial to growers. This approach also has potential for overcoming some of the efficacy problems that occur with application of individual biological control agent.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Haiyan Fan ◽  
Meiling Yao ◽  
Haiming Wang ◽  
Di Zhao ◽  
Xiaofeng Zhu ◽  
...  

Abstract Background Root-knot nematode is one of the most significant diseases of vegetable crops in the world. Biological control with microbial antagonists has been emerged as a promising and eco-friendly treatment to control pathogens. The aim of this study was to screen and identify novel biocontrol agents against root-knot nematode, Meloidogyne incognita. Results A total of 890 fungal isolates were obtained from rhizosphere soil of different crops and screened by nematicidal activity assays. Snef1910 strain showed high virulence against second stage juveniles (J2s) of M. incognita and identified as Trichoderma citrinoviride by morphology analysis and biomolecular assay. Furthermore, T. citrinoviride Snef1910 significantly inhibited egg hatching with the hatching inhibition percentages of 90.27, 77.50, and 67.06% at 48, 72, and 96 h after the treatment, respectively. The results of pot experiment showed that the metabolites of T. citrinoviride Snef1910 significantly decreased the number of root galls, J2s, and nematode egg masses and J2s population density in soil and significantly promoted the growth of tomato plants. In the field experiment, the biocontrol application showed that the control efficacy of T. citrinoviride Snef1910 against root-knot nematode was more than 50%. Meanwhile, T. citrinoviride Snef1910 increased the tomato plant biomass. Conclusions T. citrinoviride strain Snef1910 could be used as a potential biological control agent against root-knot nematode, M. incognita.


2019 ◽  
Vol 14 (6) ◽  
pp. 215 ◽  
Author(s):  
Isnainy dinul Mursyalatiyus ◽  
Abdul Munif ◽  
Abdjad Asih Nawangsih

Endophytic Bacteria from Tobacco Plant as Biocontrol Agent of  Meloidogyne spp.Soilborne disease on tobacco plants caused by fungal and bacterial infection in association with root-knot nematode (Meloidogyne spp.) may cause significant yield loss.  Endophytic bacteria have been recognized as biological control agent for Meloidogyne spp. as well as  plant promoting growth agent. Research was conducted to evaluate endophytic bacteria isolated from tobacco plants as biological control agent for Meloidogyne spp. infecting tobacco. A total of 215 isolates of endophytic bacteria were isolated from root of two tobacco varieties, Kemloko and Prancak 95.  Biosafety screening showed that 80 isolates (37%) and 7 isolates (8%) gave negative reaction on hypersensitivity test and hemolysis test, respectively.  Seven isolates i.e. TPT3.10, TPT2.1, TK3n8, TK2t21, TK2n8, TK3n1 and TK2t11 were able to promote plant growth and increase the mortality of juvenile Meloidogyne spp. Physiological characterization of endophytic bacteria showed that most of the isolates were able to produce protease enzyme, phosphate, nitrogen and HCN. The same isolates were also able to suppress the number of galls from 80.09% up to 93.82%. Two isolates, TPT3.10 and TK2n8, are considered having the best suppression on root gall formation.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 619 ◽  
Author(s):  
Ibrahim Sani ◽  
Siti Izera Ismail ◽  
Sumaiyah Abdullah ◽  
Johari Jalinas ◽  
Syari Jamian ◽  
...  

Whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), consists of genetically diverse species known to cause significant destruction in several crops around the world. Nymphs and adults of B. tabaci cause damage to plants during feeding, and they can act as a virus vector, thus causing significant yield loss to crops in the tropical and subtropical regions. Chemical pesticides are widely used to control B. tabaci due to their immediate action, but this approach has several drawbacks including food safety issues, insecticide resistance, environmental pollution, and the effect on non-target organisms. A biological control agent using entomopathogenic fungi (EPF) has therefore been developed as an alternative against the conventional use of chemical pesticides in an integrated pest management (IPM) system to effectively control B. tabaci. It is apparent from this review that species of hyphomycetes fungi are the most common EPF used to effectively control B. tabaci, with the second instar being the most susceptible stage of infection. Therefore, this review article focuses specifically on the control of B. tabaci with special emphasis on the use of EPF as biological control agents and their integration in IPM.


2015 ◽  
Vol 7 (2) ◽  
pp. 1012-1015
Author(s):  
Subhalaxmi Roy ◽  
Arun Rathod ◽  
Aniruddha Pramanik

An investigation was conducted for the management of root knot nematode Meloidogyne incognita (Kofoid and White) Chitwood infesting tomato through the application of bio-control agent like Bacillus subtilis, Trichoderma harzianum and Pseudomonas fluorescens. Experiment result revealed that minimum no. of galls/25seedlings (17.50) and maximum seedling height (27.6cm) were observed in Bacillus subtilis @50g/m2 in nursery bed + B. subtilis @ 5kg along with 2.5 tons of FYM/ ha. The highest weight/25seedlings (69.50g) was noticed in the B. subtilis @50g/m2 in nursery bed + B. subtilis 2.5kg along with 2.5 tons of FYM/ha. The highest growth of the plant at 45 DAT (49.2cm) and at harvest (81.2cm) and maximum fresh (711.3g) and dry weight (265g) was found in B. subtilis @50g/m2 in nursery bed + B. subtilis 2.5kg along with 2.5 tons of FYM/ha. B. subtilis @50g/m2 in nursery bed + B. subtilis 2.5kg along with 2.5 tons of FYM/ha exhibited lowest gall index (1.2/plant) and highest reduction of nematode population and provided highest yield of tomato fruits (335.75q/ha).


2019 ◽  
Vol 11 (1) ◽  
pp. 16-22
Author(s):  
N. B. Izuogu ◽  
H. S. Baba ◽  
E. O. Winjobi

Abstract Two field trials were carried out at the Teaching and Research Farm of the University of Ilorin in the 2012 and 2014 planting seasons to find out the effeciency of Trichoderma harzianum as a bio-control agent in controlling root-knot nematode (Meloidogyne incognita) in two pepper varieties (F1 Nikita and Gianfranco Fuscello). A 2 × 2 factorial design fitted into a randomized complete block design (RCBD) was used with 5 replications. The T. harzianum filtrate significantly increased plant height, number of leaves, and yield. The control showed higher root galling and soil nematode population. Varietal differences showed that F1 Nikita performed significantly better than G. Fuscello. The combination of Trichoderma and F1 Nikita appears effective for managing root-knot nematodes.


Plant Disease ◽  
2020 ◽  
Author(s):  
Nan Yin ◽  
Rui Liu ◽  
JianLong zhao ◽  
Raja Asad Ali Khan ◽  
Yan Li ◽  
...  

Bacillus cereus strain Bc-cm103 shows nematicidal activity and therefore has been used as a biological control agent to control the root-knot nematode Meloidogyne incognita. However, it remains unknown whether volatile organic compounds (VOCs) produced by B. cereus strain Bc-cm103 are effective in biocontrol against M. incognita. Therefore, in this study, we investigated the activity of Bc-cm103 VOCs against M. incognita. The B. cereus strain Bc-cm103 significantly repelled the second-stage juveniles (J2s) of M. incognita. In vitro evaluation of VOCs produced by the fermentation of Bc-cm103 in a three-compartment Petri dish revealed the mortality rates of M. incognita J2s as 90.8% at 24 h and 97.2% at 48 h. Additionally, evaluation of the ability of Bc-cm103 VOCs to suppress M. incognita infection in a double-layered pot test showed that root galls on cucumber roots decreased by 46.1%. Furthermore, 21 VOCs were identified from strain Bc-cm103 by solid-phase micro-extraction gas chromatography-mass spectrometry (SPME-GC-MS), including alkanes, alkenes, esters and sulfides. Among them, dimethyl disulfide (30.63%) and S-methyl ester butanethioic acid (30.29%) were reported to have strong nematicidal activity. Together, these results suggest that B. cereus strain Bc-cm103 exhibits fumigation activity against M. incognita.


Sign in / Sign up

Export Citation Format

Share Document