Aspects of nanometer scale imaging with extreme ultraviolet (EUV) laboratory sources

2012 ◽  
Vol 20 (1) ◽  
pp. 1-14 ◽  
Author(s):  
P. Wachulak ◽  
M. Marconi ◽  
A. Isoyan ◽  
L. Urbanski ◽  
A. Bartnik ◽  
...  

AbstractImaging systems with nanometer resolution are instrumental to the development of the fast evolving field of nanoscience and nanotechnology. Decreasing the wavelength of illumination is a direct way to improve the spatial resolution in photon-based imaging systems and motivated a strong interest in short wavelength imaging techniques in the extreme ultraviolet (EUV) region. In this review paper, various EUV imaging techniques, such as 2D and 3D holography, EUV microscopy using Fresnel zone plates, EUV reconstruction of computer generated hologram (CGH) and generalized Talbot self-imaging will be presented utilizing both coherent and incoherent compact laboratory EUV sources. Some of the results lead to the imaging with spatial resolution reaching 50 nm in a very short exposure time. These techniques can be used in a variety of applications from actinic mask inspection in the EUV lithography, biological imaging to mask-less lithographic processes in nanofabrication.

2020 ◽  
Vol 10 (23) ◽  
pp. 8338
Author(s):  
Alfio Torrisi ◽  
Przemysław W. Wachulak ◽  
Andrzej Bartnik ◽  
Łukasz Węgrzyński ◽  
Tomasz Fok ◽  
...  

Over the last decades, remarkable efforts have been made to improve the resolution in photon-based microscopes. The employment of compact sources based on table-top laser-produced soft X-ray (SXR) in the “water window” spectral range (λ = 2.3–4.4 nm) and extreme ultraviolet (EUV) plasma allowed to overcome the limitations imposed by large facilities, such as synchrotrons and X-ray free electron lasers (XFEL), because of their high complexity, costs, and limited user access. A laser-plasma double stream gas-puff target source represents a powerful tool for microscopy operating in transmission mode, significantly improving the spatial resolution into the nanometric scale, comparing to the traditional visible light (optical) microscopes. Such an approach allows generating the plasma efficiently, without debris, providing a high flux of EUV and SXR photons. In this review, we present the development and optimization of desktop imaging systems: a EUV and an SXR full field microscope, allowing to achieve a sub-50 nm spatial resolution with short exposure time and an SXR contact microscope, capable to resolve internal structures in a thin layer of sensitive photoresist. Details about the source, as well as imaging results for biological applications, will be presented and discussed.


2001 ◽  
Vol 7 (S2) ◽  
pp. 310-311
Author(s):  
Thomas Gemming

High resolution transmission electron microscopy (HREM) is an excellent experimental method to image grain boundary structures with atomic resolution. The advantage of the method is the short exposure time of only about one second that is needed to record an image. Other methods like Z-contrast imaging require much longer exposure times and are therefore much more prone to specimen drift during recording. However there is the remaining difficulty to HREM that the evaluation of experimental images is not straightforward and a thorough analysis of the images is necessary in order to deduce quantitative information with small error bars of only a few pm (10-15m). A second inherent difficulty common to all atomic resolution imaging techniques is that the information is retrieved from a very small area of a specimen. The question arising from that is: can we nevertheless be sure to obtain a representative answer to a “real world” material science problem? A positive answer to this question is given by the investigations presented here.


1999 ◽  
Vol os-8 (1) ◽  
pp. 1558925099OS-80 ◽  
Author(s):  
Hong Yin ◽  
Zanyao Yan ◽  
Randall R. Bresee

High-speed digital imaging techniques and web measurements were used to investigate the meltblowing (MB) process. We evaluated fiber diameter, fiber orientation, fiber entanglement, fiber velocity and fiber acceleration between the die and collector. Three processing variables were studied: primary air pressure, die-to-collector distance and collector surface speed. Although results of this investigation are somewhat preliminary, they provide fundamental information about the MB process and increase our understanding of it. Introduction Meltblowing (MB) is a fast, chaotic and complicated process. These features make it difficult to study the MB process theoretically as well as experimentally and most researchers have simply studied the effects of resin and process variables on web structure or web properties. Some researchers, however, have reported on-line measurements during MB [1–9]. Bansal and Shambaugh measured fiber temperature during single-hole MB using an infrared camera [1]. Wu and Shambaugh measured fiber velocity using laser Doppler velocimetry during single-hole MB [2]. Shambaugh and others reported experimental measurements of fiber motion and fiber diameter using a single-hole die [1–7]. Multiple-exposed photographs using conventional film were produced with a strobe light in a dark room to study fiber motion and single-exposed photographs were used to estimate fiber diameter. The exposure duration of the strobe light (50 μs), however, was not short enough to eliminate image blur and obtain sharp images so the primary air velocity used during MB was low (17–55 m/s). Milligan and Utsman used a similar film-based photographic technique to investigate MB using a 30-hole die [8]. Bresee and Yan used a video imaging technique to investigate the dynamics of web formation at the collector of a 600-hole MB line [9]. Measurements of the dynamics between the die and collector of a high-speed commercial-like MB process would be expected to be especially desirable for understanding MB. To directly observe dynamic motions during this fast process, it is necessary to use a short exposure time to freeze motion in each image and a high framing rate to resolve fast fiber motions. We used a high-speed digital camera from Vision Research Inc. to acquire images as rapidly as 1,000 frames/s. The camera produced image frames with a spatial resolution as great as 512×512 pixels and 8-bit gray level resolution (256 gray levels). Electronic shuttering of the camera provided exposure times as short as 50 μs/frame. To obtain exposure times shorter than 50 μs or to obtain multiple-exposed images, a high-speed pulsed laser from Oxford Lasers, Inc. was used for illumination. The laser produced 100 watt peak power at 805 nm and pulse durations as short as 1 μs were synchronized with the camera.


2015 ◽  
Vol 21 (5) ◽  
pp. 1214-1223 ◽  
Author(s):  
Przemyslaw Wachulak ◽  
Alfio Torrisi ◽  
Muhammad F. Nawaz ◽  
Andrzej Bartnik ◽  
Daniel Adjei ◽  
...  

AbstractShort illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from “water window” spectral range, λ=2.3–4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the “water window” is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.


Author(s):  
Xiao Zhang

Polymer microscopy involves multiple imaging techniques. Speed, simplicity, and productivity are key factors in running an industrial polymer microscopy lab. In polymer science, the morphology of a multi-phase blend is often the link between process and properties. The extent to which the researcher can quantify the morphology determines the strength of the link. To aid the polymer microscopist in these tasks, digital imaging systems are becoming more prevalent. Advances in computers, digital imaging hardware and software, and network technologies have made it possible to implement digital imaging systems in industrial microscopy labs.


Author(s):  
Oleg Bostanjoglo ◽  
Peter Thomsen-Schmidt

Thin GexTe1-x (x = 0.15-0.8) were studied as a model substance of a composite semiconductor film, in addition being of interest for optical storage material. Two complementary modes of time-resolved TEM were used to trace the phase transitions, induced by an attached Q-switched (50 ns FWHM) and frequency doubled (532 nm) Nd:YAG laser. The laser radiation was focused onto the specimen within the TEM to a 20 μm spot (FWHM). Discrete intermediate states were visualized by short-exposure time doubleframe imaging /1,2/. The full history of a transformation was gained by tracking the electron image intensity with photomultiplier and storage oscilloscopes (space/time resolution 100 nm/3 ns) /3/. In order to avoid radiation damage by the probing electron beam to detector and specimen, the beam is pulsed in this continuous mode of time-resolved TEM,too.Short events ( <2 μs) are followed by illuminating with an extended single electron pulse (fig. 1c)


2020 ◽  
Vol 4 (2) ◽  
pp. 722-729
Author(s):  
Usman Sani ◽  
Bashir Gide Muhammad ◽  
Dimas Skam Joseph ◽  
D. Z. Joseph

Poor implementation of quality assurance programs in the radiation industry has been a major setback in our locality. Several studies revealed that occupational workers are exposed to many potential hazards of ionizing radiation during radio-diagnostic procedures, yet radiation workers are often not monitored. This study aims to evaluate the occupational exposure of the radiation workers in Federal Medical Centre Katsina, and to compare the exposure with recommended occupational radiation dose limits. The quarterly readings of 20 thermo-luminescent dosimeters (TLDs') used by the radiation workers from January to December, 2019 were collected from the facility's radiation monitoring archive, and subsequently assessed and analyzed. The results indicate that the average annual equivalent dose per occupational worker range from 0.74 to 1.20 mSv and 1.28 to 2.21 mSv for skin surface and deep skin dose, measured at 10 mm and 0.07 mm tissue depth respectively. The occupational dose was within the recommended national and international limits of 5 mSv per annum or an average of 20 mSv in 5 years. Therefore, there was no significant radiation exposure to all the occupational workers in the study area. Though, the occupational radiation dose is within recommended limit, this does not eliminate stochastic effect of radiation. The study recommended that the occupational workers should adhere and strictly comply with the principles of radiation protection which includes distance, short exposure time, shielding and proper monitoring of dose limits. Furthermore, continuous training of the radiation workers is advised.


2018 ◽  
Vol 189 (03) ◽  
pp. 323-334 ◽  
Author(s):  
D.B. Abramenko ◽  
P.S. Antsiferov ◽  
D.I. Astakhov ◽  
Aleksandr Yu. Vinokhodov ◽  
Il'ya Yu. Vichev ◽  
...  

Author(s):  
O. Breitenstein ◽  
J.P. Rakotoniaina ◽  
F. Altmann ◽  
J. Schulz ◽  
G. Linse

Abstract In this paper new thermographic techniques with significant improved temperature and/or spatial resolution are presented and compared with existing techniques. In infrared (IR) lock-in thermography heat sources in an electronic device are periodically activated electrically, and the surface is imaged by a free-running IR camera. By computer processing and averaging the images over a certain acquisition time, a surface temperature modulation below 100 µK can be resolved. Moreover, the effective spatial resolution is considerably improved compared to stead-state thermal imaging techniques, since the lateral heat diffusion is suppressed in this a.c. technique. However, a serious limitation is that the spatial resolution is limited to about 5 microns due to the IR wavelength range of 3 -5 µm used by the IR camera. Nevertheless, we demonstrate that lock-in thermography reliably allows the detection of defects in ICs if their power exceeds some 10 µW. The imaging can be performed also through the silicon substrate from the backside of the chip. Also the well-known fluorescent microthermal imaging (FMI) technique can be be used in lock-in mode, leading to a temperature resolution in the mK range, but a spatial resolution below 1 micron.


2011 ◽  
Author(s):  
Herman Lemmens ◽  
Alan Butcher ◽  
Dennis Richards ◽  
Christopher Laughrey ◽  
Michael L. Dixon

Sign in / Sign up

Export Citation Format

Share Document