scholarly journals Bonding of High Temperature Thermoplastic Carbon Composites with Resistance Welding Technique

2018 ◽  
Vol 2018 (3) ◽  
pp. 1-13
Author(s):  
Przemysław Dobrzański

Abstract The article presents ‘state-of-the art’ on joining fibre reinforced thermoplastic composites with the use of resistance welding technique. Their welding process and potential difficulties connected with the process and quality control of a manufactured element are presented. The structure of a typical thermoplastic composite welding stand was also presented. The main welding technology elements were characterized: structure of the resistance element, implementation of the thermal process and pressure application required for joining materials. The paper also presents the required calibration ranges for a technological process with the use of strength test types SLS, DCB, SBS and nondestructive testing of joint with the ultrasonic method.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2560
Author(s):  
Guowei Zhang ◽  
Ting Lin ◽  
Ling Luo ◽  
Boming Zhang ◽  
Yuao Qu ◽  
...  

Thermoplastic composites (TPCs) are promising materials for aerospace, transportation, shipbuilding, and civil use owing to their lightweight, rapid prototyping, reprocessing, and environmental recycling advantages. The connection assemblies of TPCs components are crucial to their application; compared with traditional mechanical joints and adhesive connections, fusion connections are more promising, particularly resistance welding. This study aims to investigate the effects of process control parameters, including welding current, time, and pressure, for optimization of resistance welding based on glass fiber-reinforced polypropylene (GF/PP) TPCs and a stainless-steel mesh heating element. A self-designed resistance-welding equipment suitable for the resistance welding process of GF/PP TPCs was manufactured. GF/PP laminates are fabricated using a hot press, and their mechanical properties were evaluated. The resistance distribution of the heating elements was assessed to conform with a normal distribution. Tensile shear experiments were designed and conducted using the Taguchi method to evaluate and predict process factor effects on the lap shear strength (LSS) of GF/PP based on signal-to-noise ratio (S/N) and analysis of variance. The results show that current is the main factor affecting resistance welding quality. The optimal process parameters are a current of 12.5 A, pressure of 2.5 MPa, and time of 540 s. The experimental LSS under the optimized parameters is 12.186 MPa, which has a 6.76% error compared with the result predicted based on the S/N.


2008 ◽  
Vol 580-582 ◽  
pp. 397-400 ◽  
Author(s):  
Soo Sung Kim ◽  
Dae Seo Koo ◽  
Geun Il Park ◽  
Jin Hyun Koh

The remote resistance welding technology in the hot cell environment for DUPIC (Direct Use of spent PWR fuel In CANDU reactors) fuel fabrication was established. To do this, a preliminary investigation for hands-on fuel fabrication outside the hot cell was conducted in the consideration of constraints caused by welding in the hot cell. Further welding experiments were carried out to improve the RW process. A remote resistance welding apparatus was developed. The characteristics of welds made by RW and LBW were compared in terms of the weld nugget penetrations and torque strength. It was found that resistance welding was a more suitable welding process for joining the endplate to the end caps in the hot cell. The optimum conditions for RW in the hot cell operation in a remote manner were also obtained.


2007 ◽  
Vol 353-358 ◽  
pp. 2007-2010 ◽  
Author(s):  
Jiu Chun Yan ◽  
Xiao Lin Wang ◽  
Rui Qi Li ◽  
Hui Bin Xu ◽  
Shi Qin Yang

The ultrasonic welding process of thermoplastic composite with different shapes of energy director (ED) was simulated using finite element model. The results show that the highest temperature zone locates at the tip for the semicircular and triangular ones, and locates at the middle height for the trapezoid one. But it does not locate at the body of ED for the rectangular one. Energy director with different shapes lead to the temperature rising rate at different order of amplitude. The welding amplitude has same influence on the four shapes of ED. The temperature distributing profiles of semicircular, triangular and trapezoid ED keep constant from the initial welding time to that when the highest temperature on joints arrives the temperature of glass transformation (Tg), but the profile for rectangular ED changes greatly.


2020 ◽  
pp. 002199832095705
Author(s):  
David Brassard ◽  
Martine Dubé ◽  
Jason R Tavares

Electrically conductive nanocomposite heating elements are being developed as a complement to traditional carbon fibre or stainless steel heating elements in resistance welding of thermoplastic composites. Here we present the development of a finite element model of the resistance welding process with these new heating elements, from which we establish a process window for high quality welded joints. The finite element model results were validated experimentally and a lap shear strength improvement of 28% is reported relative to previously published results. Fractography analysis of the broken joints revealed a thin-layer cohesive failure mode due to the brittleness of the nanocomposite heating elements.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5832
Author(s):  
João Pedro Reis ◽  
Marcelo de Moura ◽  
Sylwester Samborski

Thermoset fiber reinforced composites, widely used in current structural applications, have complex repair procedures and generates significant amounts of scrap due to its recycling difficulties, which does not comply with the most recent environmental restrictions. These disadvantages may be overcome by using a thermoplastic matrix phase, which is very suitable to be joined and repaired by local melting, making the composite material fully recyclable. This work presents a literature review on the joining methods applicable to thermoplastic based composites and their potential applications to be used as repair procedures in structural elements. The effectiveness of selected adhesive and fusion bonding techniques for several thermoplastic composite systems is evaluated by a comparative study based on the joints’ strength and toughness results available in the literature. This work focuses on the three most promising fusion bonding techniques: Resistance welding, induction welding, and ultrasonic welding. The advantages and drawbacks for each one of these processes are discussed, as well as their suitability for several specific structural applications. In addition, several discordant aspects for each welding technique are identified and the corresponding recommendations are discussed. A compilation of analytical models for the mechanisms of heat generation and transient heat transfer modelling is also presented for each fusion bonding process in order to promote their application in numerical modelling.


2021 ◽  
Author(s):  
ABHAS CHOUDHARY, ◽  
IRENE FERNANDEZ

Multi-spot sequential ultrasonic welding is a promising joining technique for fibre-reinforced thermoplastic composites structures (TPC). In existing research on the multi-spot sequential ultrasonic welding process, welds are produced through the use of a static table-top welding machine, at a coupon level. However, in order to apply this joining technology to large structures, the welding process needs to be up-scaled through the use of a robotic platform. At the Smart Advanced Manufacturing (SAM|XL) automation field lab and TU Delft Aerospace Engineering, a robotic sequential ultrasonic welding system has been developed. The system consists of a welding end-effector (EEF) equipped with various sensors that enable online process monitoring and control, which can be mounted on an industrial robot arm to perform sequential multi-spot welds. The goal of this study was to assess the welding performance of the ultrasonic welding EEF, which was mounted on an industrial KUKA KR210 R2700 Extra 10-axis robot arm, by comparing it to the performance of welds produced through the static table-top machine. In this study, single and multi-spot welds were produced on thermoplastic composite coupons, based on welding conditions which were defined in a preliminary study. The robot and EEF deflections observed during the welding process were analysed to assess the deviation of the robotic process from the static one. The feedback obtained from the welding equipment in terms of consumed power and tool displacement in both processes was also compared. The weld quality was assessed though single lap shear testing of the welded joints as well as fractography of the failure surface. The results of this study indicate that the developed robotic welding process is quite robust and is capable of producing high-quality sequential welded joints despite significant system deflections observed during the welding process. Slightly lower welded area and weld strength was obtained which can be attributed to the system deflections. Finally, the results indicate that the use of a stiffer robotic platform as well as a stiffer EEF construction will result in better system rigidity and weld spot positioning accuracy, and through this the welding process shows promise for large-scale industrial applications.


2021 ◽  
pp. 002199832097681
Author(s):  
F Köhler ◽  
IF Villegas ◽  
C Dransfeld ◽  
A Herrmann

Ultrasonic welding is a promising technology to join fibre-reinforced thermoplastic composites. While current studies are mostly limited to fabric materials the applicability to unidirectional materials, as found in aerospace structures, would offer opportunities for joining primary aircraft structures. However, due to the highly anisotropic flow of a molten unidirectional ply undesired squeeze flow phenomena can occur at the edges of the weld overlap. This paper investigates how the fibre orientation in the plies adjacent to the weld line influences the welding process and the appearance of edge defects. Ultrasonic welding experiments with different layups and energy director configurations were carried out while monitoring temperatures at different locations inside and outside the weld overlap. The joints were characterized by single lap shear tests, analysis of corresponding fracture surfaces and microscopic cross-sections. Results showed that the anisotropic flow and the anisotropic thermal conductivity of the plies adjacent to the weld line have a distinct effect on the appearance and location of edge defects. By using energy directors that cover only part of the weld overlap area a new approach was developed to mitigate edge defects caused by the highly directional properties of the unidirectional plies.


CERNE ◽  
2016 ◽  
Vol 22 (4) ◽  
pp. 449-456 ◽  
Author(s):  
Hossein Mohammadi ◽  
Seyedmohammad Mirmehdi ◽  
Lisiane Nunes Hugen

ABSTRAT Thermoplastic composites made with 45, 60 and 75% of rice straw as filler and two types of thermoplastics, virgin polyethylene (PE) and polypropylene (PP) were evaluated. The final boards were made with and without maleic anhydride modified polypropylene (MAPP) at 2% of the total weight of each specimen. The flexural and tensile strengths were measured for dry composites and also measured after 24 h of water immersion of the composites (wet condition). By increasing the filler content, the flexural and tensile strengths and also the density of the specimens decreased. The type of matrix (PE or PP) did not affect significantly the flexural strength, but PP led to higher values of tensile strength for low fiber loadings (45% and 60%). Coupling agents increased the flexural and tensile strength. After water immersion, modulus of elasticity and modulus of rupture were decreased, while tensile strength was less influenced.


2021 ◽  
Vol 50 (9) ◽  
pp. 2743-2754
Author(s):  
Ashish Jacob ◽  
Sachin Maheshwari ◽  
Arshad Noor Siddiquee ◽  
Abdulrahman Al-Ahmari ◽  
Mustufa Haider Abidi ◽  
...  

Certain age hardenable alloys such as AA7475 cannot be joined with perfection using fusion welding techniques. This requires non-conventional welding technique such as friction stir welding process to join these ‘difficult to weld’ alloys. In this study, three different cooling conditions i.e. cryogenic, sub-zero, and zero-degree Celsius temperature conditions have been analyzed to understand its impact on the welding process. In-process cooling was found to behave effectively and also enhanced the mechanical properties of the welded joints. A stable microstructure was clearly seen in the images observed under the metallurgical microscope. The weld efficiencies were found to be good in each of the samples which are indicative of a strong metallic joint. The effective cooling conditions employed had an overall positive impact on the joint.


2020 ◽  
Vol 21 (2) ◽  
pp. 67-71
Author(s):  
Gheorghe Novac ◽  
Bogdan Novac

The paper presents aspects regarding the influence of vibrations on the mechanical properties of welded joints, made with basic materials of Spanish and Romanian origin. In this research is presented the practical way to make the necessary assemblies for the proposed tests. The tests show that vibrations have a significant contribution to the quality of welded joints. This is explained by the appearance of several crystallization centres which makes the structure finer. By using vibrations, the atoms are rearranged in the structure, ensuring a proper de-tensioning. The stresses induced in welded metals are significantly reduced by the use of vibration during welding process. The addition materials have a significant contribution to the emergence of stresses in welded joints as well. These stresses can contribute to the appearance of microstructural constituents with significant hardness. The welding equipment and technologies used also have a significant contribution to the emergence of the remaining stresses. For example, the submerged arc welding technology (SAF) can introduce very high internal stresses. By using vibrations during the welding process, it is achieved a fine structure and a significant reduction of remaining stresses in the welded joints.


Sign in / Sign up

Export Citation Format

Share Document