scholarly journals Tectonothermal history of the basement rocks within the NW Dinarides: new40 Ar/39 Ar ages and synthesis

2012 ◽  
Vol 63 (6) ◽  
pp. 441-452 ◽  
Author(s):  
Šoštarić Sibila Borojević ◽  
Neubauer Franz ◽  
Handler Robert ◽  
Palinkaš Ladislav A.

Abstract Very low-grade and low-grade metamorphosed basement rocks from distinct inliers of the Africa-derived northwestern Dinarides (Medvednica Mts and Paleozoic Sana-Una Unit, respectively) have been studied with the multigrain step-heating 40Ar/39Ar technique in order to compare and reveal their tectonothermal history. 40Ar/39Ar ages from detrital white mica of the very low-grade basement rocks of the Paleozoic Sana-Una Unit gave a Variscan age of ~335 Ma. The new age is in agreement with 40Ar/39Ar ages from the very low-grade basement exposed at Petrova and Trgovska Gora of the NW Dinarides. Within low-grade metamorphic basement rocks from the Medvednica Mts, we found no Variscan ages. White mica from phyllitic basement rocks of the Medvednica Mts gives predominantly early Alpine ages ranging between 135 and 122 Ma and younger Alpine ages of ~80 Ma. The early Alpine ages of 135 and 122 Ma are interpreted as the date to the onset of ductile nappe stacking predating the formation of Gosau-type collapse basins. The late early Alpine event of ~80 Ma can be traced in the entire Cretaceous-aged orogen of the Circum- Pannonian Region and is synchronous with subsidence of the Gosau-type basins and opening and closure of the neighbouring Sava-Vardar Zone.

2020 ◽  
pp. 467-495
Author(s):  
T. Baker ◽  
S. Mckinley ◽  
S. Juras ◽  
Y. Oztas ◽  
J. Hunt ◽  
...  

Abstract The Miocene Kışladağ deposit (~17 Moz), located in western Anatolia, Turkey, is one of the few global examples of Au-only porphyry deposits. It occurs within the West Tethyan magmatic belt that can be divided into Cretaceous, Cu-dominant, subduction-related magmatic arc systems and the more widespread Au-rich Cenozoic magmatic belts. In western Anatolia, Miocene magmatism was postcollisional and was focused in extension-related volcanosedimentary basins that formed in response to slab roll back and a major north-south slab tear. Kışladağ formed within multiple monzonite porphyry stocks and dikes at the contact between Menderes massif metamorphic basement and volcanic rocks of the Beydağı stratovolcano in the Uşak-Güre basin. The mineralized magmatic-hydrothermal system formed rapidly (<400 kyr) between ~14.75 and 14.36 Ma in a shallow (<1 km) volcanic environment. Volcanism continued to at least 14.26 ± 0.09 Ma based on new age data from a latite lava flow at nearby Emiril Tepe. Intrusions 1 and 2 were the earliest (14.73 ± 0.05 and 14.76 ± 0.01 Ma, respectively) and best mineralized phases (average median grades of 0.64 and 0.51 g/t Au, respectively), whereas younger intrusions host progressively less Au (Intrusion 2A: 14.60 ± 0.06 Ma and 0.41 g/t Au; Intrusion 2 NW: 14.45 ± 0.08 Ma and 0.41 g/t Au; Intrusion 3: 14.39 ± 0.06 and 14.36 ± 0.13 Ma and 0.19 g/t Au). A new molybdenite age of 14.60 ± 0.07 Ma is within uncertainty of the previously published molybdenite age (14.49 ± 0.06 Ma), and supports field observations that the bulk of the mineralization formed prior to the emplacement of Intrusion 3. Intrusions 1 and 2 are altered to potassic (biotite-K-feldspar-quartz ± magnetite) and younger but deeper sodic-calcic (feldspar-amphibole-magnetite ± quartz ± carbonate) assemblages, both typically pervasive with disseminated to veinlet-hosted pyrite ± chalcopyrite ± molybdenite and localized quartz-feldspar stockwork veinlets and sodic-calcic breccias. Tourmaline-white mica-quartz-pyrite alteration surrounds the potassic core both within the intrusions and outboard in the volcanic rocks. Tourmaline was most strongly developed on the inner margins of the tourmaline-white mica zone, particularly along the Intrusion 1 volcanic contact where it formed breccias and veins, including Maricunga-style veinlets. Field relationships show that the early magmatic-hydrothermal events were cut by Intrusion 2A, which was then overprinted by Au-bearing argillic (kaolinite-pyrite ± quartz) alteration, followed by Intrusion 3 and late-stage, low-grade to barren argillic and advanced argillic alteration (quartz-pyrite ± alunite ± dickite ± pyrophyllite). Gold deportment changes with each successive hydrothermal event. The early potassic and sodic-calcic alteration controls much of the original Au distribution, with the Au dominantly deposited with feldspar and lesser quartz and pyrite. Tourmaline-white mica and argillic alteration events overprinted and altered the early Au-bearing feldspathic alteration and introduced additional Au that was dominantly associated with pyrite. Analogous Au-only deposits such as Maricunga, Chile, La Colosa, Colombia, and Biely Vrch, Slovakia, are characterized by similar alteration styles and Au deportment. The deportment of Au in these Au-only porphyry deposits differs markedly from that in Au-rich porphyry Cu deposits where Au is typically associated with Cu sulfides.


1981 ◽  
Vol 18 (8) ◽  
pp. 1310-1319 ◽  
Author(s):  
Wm. H. Mathews

Unmetamorphosed Early Eocene sediments and volcanic rocks of the Trinity Hills and Enderby Cliffs yield K–Ar dates of 42–49 Ma. These overlie high-grade gneisses yielding K–Ar ages on biotites, muscovites, and hornblende ranging from 47 to 60 Ma. The Eocene sediments and volcanics rest nearby on low-grade phyllites, greenstones, and schists yielding dates from 83 to 155 Ma. The gneiss dates are regarded as reset by some Late Cretaceous to earliest Cenozoic thermal event that did not affect, at least to the same degree, the nearby less metamorphosed basement rocks. A thermal history has been constructed to account for the decreasing apparent ages of biotite (assumed blocking temperature of 250 °C) with increasing depth below the sub-Eocene unconformity, for the greater ages of hornblende and muscovite in the same rocks (blocking temperatures of 500 and 350 °C), as well as for thermal changes associated with high vitrinite reflectance from coal at one site in the covering sediments. Very rapid stripping (something like 5 km in 12 Ma) is inferred for the areas of reset gneisses, but not for the schist areas, in early Cenozoic time.


Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 648
Author(s):  
Wenbei Shi ◽  
Fei Wang ◽  
Lin Wu ◽  
Liekun Yang ◽  
Yinzhi Wang ◽  
...  

Discordant biotite 40Ar/39Ar age spectra are commonly reported in the literature. These can be caused by a number of processes related to in vacuo heating, homogenization of the argon distribution, and production of misleadingly flat age spectra. Problematic samples are typically derived from metamorphic belts; thermal overprinting and chloritization are two of the main known causes of disturbed age spectra. Biotite and muscovite of the Waziyü detachment fault, Yiwulüshan metamorphic core complex, Jinzhou, China, yield highly variable 40Ar/39Ar data that hinder reconstruction of their deformation history. We combined mineralogical studies with detailed 40Ar/39Ar dating of biotite, phengitic white mica, and K-feldspar augen from this fault. We infer that argon within the biotite was modified by hydrothermal fluids during fault activity and associated epidotization, chloritization, and muscovitization such that bulk sample step-heating, single grain total fusion, and in situ laser ablation of biotite produced mixed 40Ar/39Ar ages. However, detailed step-heating of biotite shows that this mineral records the ages of cooling and later alteration based on data from a coexisting rigid feldspar porphyroblast and neo-crystallized phengite that record two periods of fault activity at ~120–113 and 18–12 Ma. Our data reveal that the discordant biotite 40Ar/39Ar age spectra might represent a mixed age and that only detailed step-heating methods can extract meaningful geological details of the deformation history of a fault. Therefore, the mineral and the method must be carefully considered if metamorphic or deformed samples are dated.


2011 ◽  
Vol 149 (2) ◽  
pp. 208-220 ◽  
Author(s):  
UWE RING ◽  
ARNE P. WILLNER ◽  
PAUL W. LAYER ◽  
PETER P. RICHTER

AbstractWe describe the geometry and kinematics of a Jurassic to Early Cretaceous transpressive sinistral strike-slip system within a metamorphic basement inlier of the Mesozoic magmatic arc near Bahia Agua Dulce at latitudes 31–32°S in north-central Chile and discuss possible relations with the Atacama Fault System further north. Sinistral transpression overprints structures of an accretionary system that is represented by the metamorphic basement. Sub-vertical semi-ductile NNW-striking strike-slip shear zones are the most conspicuous structures. Chlorite and sericite grew, and white mica and quartz dynamically recrystallized, suggesting low-grade metamorphic conditions during semi-ductile deformation. Folds at the 10–100 metre scale developed before and during strike-slip shearing. The folds are deforming a former sub-horizontal transposition foliation that originated during prior accretion processes. The folds have axes sub-parallel to the strike-slip shear zones and sub-vertical axial surfaces indicating a component of shortening parallel to the shear-zone boundaries, suggesting an overall transpressive deformation regime. Transpressive strike-slip deformation also affects Middle Triassic (Anisian) basal breccias of the El Quereo Formation.40Ar–39Ar laser ablation ages of synkinematically recrystallized white mica in one of the shear zones provide an age of 174–165 Ma for the waning stages of semi-ductile strike-slip shearing. The semi-ductile shear zones are cut by mafic and rhyolite dykes. Two rhyolite dykes yield40Ar–39Ar ages of 160.5 ± 1.7 Ma and 131.9 ± 1.7 Ma, respectively. The latter dyke has been affected by brittle faulting. Fault-slip analysis shows that the kinematics of the faulting event is similar to the one of the semi-ductile shearing event, suggesting that sinistral transpression continued after ~130 Ma. Timing, kinematics and geographic position suggest that the shear zones at Bahia Agua Dulce represent a southern continuation of the prominent Atacama Fault System that affected the Jurassic/Early Cretaceous arc over its ~1400 km length.


Author(s):  
Linus Klug ◽  
Nikolaus Froitzheim

AbstractThe Ötztal Nappe in the Eastern Alps is a thrust sheet of Variscan metamorphic basement rocks and their Mesozoic sediment cover. It has been argued that the main part of the Ötztal Nappe and its southeastern part, the Texel Complex, belong to two different Austroalpine nappe systems and are separated by a major tectonic contact. Different locations have been proposed for this boundary. We use microprobe mapping of garnet and structural field geology to test the hypothesis of such a tectonic separation. The Pre-Mesozoic rocks in the area include several lithotectonic units: Ötztal Complex s.str., Texel Complex, Laas Complex, Schneeberg Complex, and Schneeberg Frame Zone. With the exception of the Schneeberg Complex which contains only single-phased (Eoalpine, i.e. Late Cretaceous) garnet, all these units have two-phased garnet with Variscan cores and Eoalpine rims. The Schneeberg Complex represents Paleozoic sediments with only low-grade (sub-garnet-grade) Variscan metamorphism which was thrust over the other units and their Mesozoic cover (Brenner Mesozoic) during an early stage of the Eoalpine orogeny, before the peak of Eoalpine metamorphism and garnet growth. Folding of the thrust later modified the structural setting so that the Schneeberg Thrust was locally inverted and the Schneeberg Complex came to lie under the Ötztal Complex s.str. The hypothesized Ötztal/Texel boundaries of earlier authors either cut across undisturbed lithological layering or are unsupported by any structural evidence. Our results support the existence of one coherent Ötztal Nappe, including the Texel Complex, and showing a southeastward increase of Eoalpine metamorphism which resulted from southeastward subduction.


2012 ◽  
Vol 49 (7) ◽  
pp. 781-795 ◽  
Author(s):  
P.H. Reynolds ◽  
C.E. White ◽  
S.M. Barr ◽  
C.M. Muir

Single-grain 40Ar/39Ar ages are reported for detrital white mica, along with conventional step-heating data for whole rocks, from low-grade metasandstone samples from the Goldenville, Halifax, and Rockville Notch groups in the Meguma terrane of southern Nova Scotia. The majority (166) of single grains from 11 samples yielded ages between ca. 615 and 350 Ma, and the remaining 12 grains yielded ages between ca. 1900 and 870 Ma. The late Neoproterozoic–Paleozoic age distributions are consistent with derivation of sediments from the rapidly uplifted flanks of an active rift, where partial to complete resetting of white mica ages occurred at ca. 520–500 Ma, preceding sediment deposition. The ca. 615 Ma ages may be relics of the original detrital white mica that existed in the source rocks prior to the rifting event. Ages from the Upper Silurian White Rock Formation appear to reflect this same ca. 520–500 Ma event, suggesting that sediments in the White Rock Formation were recycled from the Goldenville and Halifax groups. The older Precambrian ages are inferred to represent white mica in the source region, likely Amazonia. The whole-rock age spectra are discordant, with pronounced age gradients and no well-defined age plateaus. Initial gas released from five of the samples at low laboratory extraction temperatures (ca. 450–500 °C) yielded ages of ca. 260–300 Ma, not seen in the single-grain data, whereas gas released at the highest extraction temperatures yielded ages in the range ca. 510–530 Ma, possibly reflecting the principal result obtained from the single-grain data.


1992 ◽  
Vol 29 (3) ◽  
pp. 432-445 ◽  
Author(s):  
S. J. Sutton ◽  
J. B. Maynard

Confusion exists over the usefulness of chemical data from Precambrian weathering profiles in constraining models of atmospheric evolution. One difficulty is in correctly identifying ancient weathering effects and isolating them from numerous other processes that are likely to have affected such ancient rocks. In this study of a middle Precambrian granitic weathering profile, we have used several analytical techniques to separate weathering-related chemical and mineralogical changes from those resulting from other processes. The profile is exposed beneath the Huronian at Lauzon Bay in the Blind River area of Ontario and has a complex history of alteration events, addition of allochthonous material, and low-grade metamorphism. Much of this history can be deciphered, and changes in mineralogy and bulk and mineral chemistry can be assigned to separate alteration events. Specifically, the granite has undergone preweathering albitization, resulting in Na enrichment, followed by chemical weathering that corroded K-feldspar and nearly destroyed plagioclase feldspar and mica in the regolith. Clay minerals replaced feldspars, resulting in enrichment in Al, Ti, and Zr and depletion in Na, Ca, Sr, and K. Fe has also been leached. After weathering, a fine-grained 0.5 m layer of strongly weathered allochthonous material was deposited on the regolith, followed by deposition of the Matinenda Formation. Sometime after Matinenda deposition, K- and Rb-metasomatim affected the regolith and overlying sediments, converting some clays to illite and depositing secondary K-feldspar. Greenschist-facies metamorphism probably postdated this metasomatism and converted clay minerals to white mica and chlorite.


Sign in / Sign up

Export Citation Format

Share Document