scholarly journals Influence of Metallic Die Temperature in the Solidification of Cu-10%Al-2%Fe Alloy

2010 ◽  
Vol 55 (4) ◽  
pp. 1029-1033 ◽  
Author(s):  
I. Cenoz

Influence of Metallic Die Temperature in the Solidification of Cu-10%Al-2%Fe AlloyThe phases obtained in copper aluminium bronze alloy (Cu-Al10-Fe2) cast into a permanent die were investigated. The parameters examined were the pre-heating temperatures of the die and the graphite coating thickness. The phases α and γ2were detected as well as the metastable phases β' and γ'. The intermetallics of the system Fe-Al were obtained in various stoichiometric compositions. The different cooling rates of the casting resulted in two mechanisms of transformation to α grains out of the unstable β phase, one being nucleation and growth producing needle shaped α grains, the other exhibiting a massive transformation to spherical α grains. These two mechanisms determine the changes in the size of the α grains as a result of changes in the cooling rate in its various ranges.

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 796
Author(s):  
Aya Takase ◽  
Takuya Ishimoto ◽  
Naotaka Morita ◽  
Naoko Ikeo ◽  
Takayoshi Nakano

Ti-6Al-4V alloy fabricated by laser powder bed fusion (L-PBF) and electron beam powder bed fusion (EB-PBF) techniques have been studied for applications ranging from medicine to aviation. The fabrication technique is often selected based on the part size and fabrication speed, while less attention is paid to the differences in the physicochemical properties. Especially, the relationship between the evolution of α, α’, and β phases in as-grown parts and the fabrication techniques is unclear. This work systematically and quantitatively investigates how L-PBF and EB-PBF and their process parameters affect the phase evolution of Ti-6Al-4V and residual stresses in the final parts. This is the first report demonstrating the correlations among measured parameters, indicating the lattice strain reduces, and c/a increases, shifting from an α’ to α+β or α structure as the crystallite size of the α or α’ phase increases. The experimental results combined with heat-transfer simulation indicate the cooling rate near the β transus temperature dictates the resulting phase characteristics, whereas the residual stress depends on the cooling rate immediately below the solidification temperature. This study provides new insights into the previously unknown differences in the α, α’, and β phase evolution between L-PBF and EB-PBF and their process parameters.


1975 ◽  
Vol 38 (6) ◽  
pp. 1073-1077 ◽  
Author(s):  
J. S. Hayward ◽  
J. D. Eckerson ◽  
M. L. Collis

Five different behaviors of man while in cold ocean water (9–10 degrees C) were assessed for their effect on rate of progress into hypothermia. With subjects wearing lifejackets, two thermally protective behaviors were studied which reduce exposure to the water of areas of body surface with high relative heat loss potential. One was huddling of three persons and the other a self-huddle behavior (HELP or Heat Escape Lessening Posture). These two behaviors resulted in significant reductions of rectal temperature cooling rate of 66 per cent and 69 per cent, respectively, of that of a control behavior. With no flotation available, two survival swimming behaviors (treading water and drownproofing) were shown to result in significant increases in cooling rate to 134 per cent and 182 per cent, respectively, of the control behavior. Potential swimming distance of subjects wearing a life-jacket was 0.85 miles in water near 12 degrees C before predicted incapacitation by hypothermia. It was concluded that behavioral variables can be of major importance in determining survival time in cold water through modulation of cooling rate associated with other variables such as fatness, body size, and clothing.


2011 ◽  
Vol 172-174 ◽  
pp. 190-195 ◽  
Author(s):  
Giorgia T. Aleixo ◽  
Eder S.N. Lopes ◽  
Rodrigo Contieri ◽  
Alessandra Cremasco ◽  
Conrado Ramos Moreira Afonso ◽  
...  

Ti-based alloys present unique properties and hence, are employed in several industrial segments. Among Ti alloys, β type alloys form one of the most versatile classes of materials in relation to processing, microstructure and mechanical properties. It is well known that heat treatment of Ti alloys plays an important role in determining their microstructure and mechanical behavior. The aim of this work is to analyze microstructure and phases formed during cooling of β Ti-Nb-Sn alloy through different cooling rates. Initially, samples of Ti-Nb-Sn system were prepared through arc melting furnace. After, they were subjected to continuous cooling experiments to evaluate conditions for obtaining metastable phases. Microstructure analysis, differential scanning calorimetry and X-ray diffraction were performed in order to evaluate phase transformations. Depending on the cooling rate and composition, α” martensite, ω phase and β phase were obtained. Elastic modulus has been found to decrease as the amount of Sn was increased.


2021 ◽  
Vol 1035 ◽  
pp. 562-567
Author(s):  
Li Chun Qi ◽  
Wen Xiao Qu ◽  
Yong Qi Zhu ◽  
Qing Liu

The phase compositions of surface and interior in Ti-32Nb-4Sn metastable b alloy were investigated. It was found that this alloy exhibits surface effect significantly different from the effects reported in Ti-10V-2Fe-3Al, Ti-22Nb-9Zr and the other titanium alloys. The surface of Ti-32Nb-4Sn specimen quenched from single b phase region was characterized by dominant b phase and a few of α″ and ω phase. While in the interior of the alloy, a large amount of α² martensite phase was observed in addition to b phase The orientation relationship between the α″ martensite and β phase is (110)β∥(002)α″, (020)β∥(022)α″ and [001]β∥[100]α″.


1982 ◽  
Vol 46 (340) ◽  
pp. 387-394 ◽  
Author(s):  
G. M. Corrigan

SynopsisNucleation and crystal growth of plagioclase have been studied in two basaltic melts by one atmosphere, constant-rate and variable-rate cooling experiments using the wire-loop technique (Donaldson et al., 1975). Constant-rate cooling studies indicate that the length of the incubation period prior to nucleation varies systematically with the degree of supercooling and with the cooling rate. Attempts to determine the rates at which the marginal parts of two dykes (from the Isle of Arran, SW Scotland) cooled, by the attempted reproduction of the natural textural features, in constant-rate cooling experiments suggest that for one of the dykes, plagioclase phenocrysts at the contact could have grown at a cooling rate of approximately 3°C/hour and the groundmass plagioclase laths at faster cooling rates in excess of 10°C/hour. For the other dyke the plagioclase laths in the rocks 0.5 cm from the dyke contact probably grew at rates slower than 2°C/hour. Attempts to validate experimentally the Jaeger (1957) cooling model for the two dykes suggest that the dykes cooled at much slower rates than the theory predicts.


This investigation is a continuation of the word on copper-zinc alloys reported in previous papers. Our previous measurements were made on quenched alloys, and it was assumed that the conditions prevailing at any temperature at the moment of quenching were retained in the quenched samples. In the present word an attempt is made to investigate the validity of this assumption by examining the alloys at the actual temperatures of annealing. Attention is directed mainly to the β-phase in tire pure region and in the mixed regions on either side of the pure phase. It was hoped that such measurements might also throw more light on the nature of the β-transformation. Apparatus and Method of Experiment . The precision camera was the same in principle as that previously used and described, with modifications in deign for high temperature word. It was made entirely of invar except that three silica rods connected the portion of the drum carrying the film to that carrying the sample. By this device the one part was well insulated thermally from the other. In order to take photographs in vacuo , the camera was fitted into a brass box with a removable lid and water-cooled sides; inside the box, the heater, consisting of "Kanthal" resistance wire embedded in alundum cement, was mounted. To hold the sample, which was in the form of fine filings on thin foil, against the camera frame, a thin sheet of copper foil was used. This was anchored with insulating porcelain beads and wire springs to the camera frame carrying the film. To minimize the heat passing from the sample to the camera frame, a thin sheet of mica of definite thickness was used around the slot over which the sample was placed. The sample was heated by bringing the heater, shaped to the contour of the camera frame, into close contact with a similarly shaped copper sheet about 1⋅5 mm. thick, into which the "hot" junction of one thermo-couple was silver-soldered; this in turn pressed against the foil on which the sample was mounted. Leads for the thermo-couple pyrometers—one to measure the approximate temperature of the sample photographed and the other to measure the camera temperature near tire film—passed through insulated plugs in one side of the box. On the opposite side, leads to the heater were similarly inserted. An outlet for exhausting the box completed the construction.


1987 ◽  
Vol 94 ◽  
Author(s):  
S. W. Lu ◽  
C. W. Nieh ◽  
J. J. Chu ◽  
L. J. Chen

ABSTRACTThe influences of implantation impurities, including BF2, B, F, As and P on the formation of epitaxial NiSi2 in nickel thin films on ion-implanted silicon have been investigated by transmission electron microscopy.The presence of BF2, B, and F atoms was observed to promote the epitaxial growth of NiSi2 at low temperatures. Little or no effect on the formation of NiSi2 was found in samples implanted with As or P ions.The results indicated that the influences of the implantation impurities are not likely to be electronic in origin. Good correlation, on the other hand, was found between the atomic size factor and resulting stress and NiSi2 epitaxy at low temperatures.


Author(s):  
Wenping Song ◽  
Andrey Ovcharenko ◽  
Guangyu Zhang ◽  
Frank E. Talke

The effect of coating thickness is investigated during transient thermal-mechanical contact between a sphere and a layered surface. The range of coating thicknesses studied was from 0.001≤t/R≤0.1, where t is the coating thickness and R is the radius of the contacting sphere. It was found that for the range of coating thickness and material properties investigated, the coating thickness has only a small effect on the mechanical deformation of the interface. On the other hand, the layer thickness has a large effect on the temperature rise of the interface.


Author(s):  
Feng Qin ◽  
Y. Kevin Chou ◽  
Dustin Nolen ◽  
Raymond G. Thompson

Chemical vapor deposition (CVD)-grown diamond films have found applications as a hard coating for cutting tools. Even though the use of conventional diamond coatings seems to be accepted in the cutting tool industry, selections of proper coating thickness for different machining operations have not been often studied. Coating thickness affects the characteristics of diamond coated cutting tools in different perspectives that may mutually impact the tool performance in machining in a complex way. In this study, coating thickness effects on the deposition residual stresses, particularly around a cutting edge, and on coating failure modes were numerically investigated. On the other hand, coating thickness effects on tool surface smoothness and cutting edge radii were experimentally investigated. In addition, machining Al matrix composites using diamond coated tools with varied coating thicknesses was conducted to evaluate the effects on cutting forces, part surface finish and tool wear. The results are summarized as follows. (1) Increasing coating thickness will increase the residual stresses at the coating-substrate interface. (2) On the other hand, increasing coating thickness will generally increase the resistance of coating cracking and delamination. (3) Thicker coatings will result in larger edge radii; however, the extent of the effect on cutting forces also depends upon the machining condition. (4) For the thickness range tested, the life of diamond coated tools increases with the coating thickness because of delay of delaminations.


Sign in / Sign up

Export Citation Format

Share Document