scholarly journals Use of short fibers as a filler in rubber compounds

2013 ◽  
Vol 13 (2) ◽  
pp. 40-43
Author(s):  
Natalia Meissner ◽  
Władysław M. Rzymski

Abstract In this work, composites made from styrene-butadiene rubber and short fibers were prepared by mixing and investigated. The influence on the vulcanization process and tensile strength properties has been studied and compared with compounds filled with carbon black. The presence of fibers gave shorter curing time and led to a slight increase in tensile strength but decreased the elongation at break of the compound.

2020 ◽  
Vol 13 (1) ◽  
pp. 1-5
Author(s):  
Patrik Macúrik ◽  
Rafal Anyszka ◽  
Ivan Hudec ◽  
Terézia Malčeková ◽  
Ján Kruželák

AbstractThe study was focused on the investigation of trans-polyoctylene (TOR) influence on cross-linking as well as mechanical and rheological properties of rubber compounds based on styrene-butadiene rubber (SBR). SBR was compounded with different proportions of TOR in the concentration range from 0 to 30 phr. Integration of TOR into rubber leads to the prolongation of the optimum curing time and scorch time and thus the decrease of the curing rate. Higher content of TOR led to less viscous rubber due to the plasticizing effect. Cross-link density of vulcanizates was reduced, which correlates with higher elongation at break. Tensile strength and hardness of vulcanizates increased with the increasing TOR content, probably due to the increasing amount of the crystalline phase.


2003 ◽  
Vol 76 (2) ◽  
pp. 299-317 ◽  
Author(s):  
A. M. Shanmugharaj ◽  
Anil K. Bhowmick

Abstract Rheometric and mechanical properties, hysteresis and swelling behavior of the Styrene-Butadiene Rubber vulcanizates (SBR) filled with unmodified and novel electron beam modified surface treated dual phase fillers were investigated. Scorch time increases for these modified filler loaded vulcanizates due to introduction of quinone type oxygen on the surface. Electron beam modification of dual phase filler in the absence of trimethylol propanetriacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) significantly improves the modulus of the SBR vulcanizates, whereas the values of tensile strength and elongation at break drop. However, presence of TMPTA or silane slightly increases the modulus with significant improvement in tensile strength. This effect is more pronounced at higher loading of these modified fillers in SBR vulcanizates. These variations in modulus and tensile strength are explained by the equilibrium swelling data, Kraus plot and a new mathematical model interpreting the polymer-filler interaction. Hysteresis loss ratio of SBR vulcanizates loaded with irradiated fillers in absence and presence of TMPTA or silane increases due to highly aggregated structure of the filler.


2013 ◽  
Vol 812 ◽  
pp. 236-240
Author(s):  
Mohd Zaki Nurul Ayunie ◽  
Ahmad Zafir Romli ◽  
M.A. Wahab ◽  
Mohd Hanafiah Abidin

The effects of epoxidized palm oil (EPO) content in carbon black filled styrene butadiene rubber (SBR) on tensile strength, elongation at break and crosslink density were investigated. Five different loadings of EPO in parts per hundred rubbers (phr) were used to test the tensile strength of the carbon black filled SBR which showed a decreasing trend as the content of EPO in the vulcanizates increased. In contrast, elongation at break showed the opposite trend where the elongation at break increased as the content of the EPO increased. The SBR vulcanizates with the highest content of EPO gave the highest value of elongation at break which is 2393.56%. In the case of swelling index, it was found to increase as the amount of EPO increased.


1979 ◽  
Vol 52 (2) ◽  
pp. 353-360 ◽  
Author(s):  
N. D. Ghatge ◽  
N. N. Maldar

Abstract The authors propose a new active vulcanizing agent 2-pentadecylbenzo-quinone dioxime, derivable from the indigenous raw material, cashewnutshell liquid. This vulcanizing agent, when oxidized by red lead, gives styrene-butadiene vulcanizates of improved tensile strength and elongation at break, compared to vulcanizates cured by p-benzoquinone dioxime, 2-methylbenzo-quinone dioxime or standard sulfur curing systems. The new vulcanizates have much greater resistance to heat aging than the corresponding sulfur vulcanisates.


2013 ◽  
Vol 747 ◽  
pp. 471-474
Author(s):  
Yotwadee Chokanandsombat ◽  
Pongdhorn Sea-Oui ◽  
Chakrit Sirisinha

In recent years, the increasing concern on the toxicity of highly aromatic oils has been incentive to the development of rubber process oils (RPOs) which are more environmentally-friendly. Many alternative eco-friendly RPOs have been tested with the aims of selecting the most suitable replacement for these highly aromatic oils. As a consequence, in order to achieve both environmental friendliness and effective rubber compounding, the aromatic content in RPOs must be optimised. In the present study, the experiments have been carried out to investigate the effects of aromatic and polycyclic aromatic compounds (PCAs) contents in RPOs on processability and mechanical properties of styrene butadiene rubber (SBR) compounds and vulcanisates. Results obtained suggest that the presence of RPOs leads to a decreased compound viscosity, and thus an enhanced processability. By incorporating the RPOs into SBR compounds, some mechanical properties including elongation at break and tear strength of cured SBR can be improved, particularly for the RPOs with high aromatic content. It is believed to be attributed to the increased compatibility between RPOs and SBR matrix. Nevertheless, the aromatic and PCA contents play little or insignificant role on the crosslink density and bulk viscosity of rubber compounds as well as hardness and compression set of vulcanisates.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1626
Author(s):  
Abdullah Gunaydin ◽  
Clément Mugemana ◽  
Patrick Grysan ◽  
Carlos Eloy Federico ◽  
Reiner Dieden ◽  
...  

A set of poly(isobornyl methacrylate)s (PIBOMA) having molar mass in the range of 26,000–283,000 g mol−1 was prepared either via RAFT process or using free radical polymerization. These linear polymers demonstrated high glass transition temperatures (Tg up to 201 °C) and thermal stability (Tonset up to 230 °C). They were further applied as reinforcing agents in the preparation of the vulcanized rubber compositions based on poly(styrene butadiene rubber) (SBR). The influence of the PIBOMA content and molar mass on the cure characteristics, rheological and mechanical properties of rubber compounds were studied in detail. Moving die rheometry revealed that all rubber compounds filled with PIBOMA demonstrated higher torque increase values ΔS in comparison with rubber compositions without filler, independent of PIBOMA content or molar mass, thus confirming its reinforcing effect. Reinforcement via PIBOMA addition was also observed for vulcanized rubbers in the viscoelastic region and the rubbery plateau, i.e. from −20 to 180 °C, by dynamic mechanical thermal analysis. Notably, while at temperatures above ~125 °C, ultra-high-molecular-weight polyethylene (UHMWPE) rapidly loses its ability to provide reinforcement due to softening/melting, all PIBOMA resins maintained their ability to reinforce rubber matrix up to 180 °C. For rubber compositions containing 20 phr of PIBOMA, both tensile strength and elongation at break decreased with increasing PIBOMA molecular weight. In summary, PIBOMA, with its outstanding high Tg among known poly(methacrylates), may be used in the preparation of advanced high-stiffness rubber compositions, where it provides reinforcement above 120 °C and gives properties appropriate for a range of applications.


2013 ◽  
Vol 812 ◽  
pp. 216-220 ◽  
Author(s):  
Mohd Nasir Anis Nazurah ◽  
Ahmad Zafir Romli ◽  
M.A. Wahab ◽  
Mohd Hanafiah Abidin

Epoxidized palm oil (EPO) can act as processing oil has the potential of non toxic, degradable, renewable resource and as the alternative safe process oils in rubber compounding. Epoxidized palm oil is used as some of additives in rubber compounding to provide function of softener or stabiliser thus, improve properties of rubber compounding performance. Rubber that is used in this study is styrene butadiene rubber (SBR); a synthetic rubber copolymer consisting of styrene and butadiene. SBR also has good abrasion resistance and good aging stability when protected by additives. Compared to natural rubber, SBR has better processability, heat aging and abrasion resistance but inferior elongation, hot tear strength, hysteresis, resilience and tensile strength. This study is focusing on the effect of EPO without the addition of carbon black into the compound via tensile and density test. This is very important as to study the physical and mechanical interaction between SBR and EPO without the influence of other fillers. Different loading of oil were used at 25 pphr, 30 pphr. 35 pphr, 40 pphr and 45 pphr in the compounding process as processing aid. EPO35 which contain 35 pphr of EPO shows the highest value of tensile strength which is 2.2 MPa. The vulcanizate that contain 30 pphr of EPO shows the highest value for Youngs modulus which is 0.22 MPa while the elongation at break increased as the oil loading increased. The highest value for density is 0.979 g/cm3 for the vulcanizate contain 25 pphr of EPO. The results indicates that EPO is potential to replace other processing oils as renewable resource and safe to human.


2011 ◽  
Vol 230-232 ◽  
pp. 103-106
Author(s):  
Hai Tao Liu ◽  
Jing Feng Zhang ◽  
Yi Guang Tian ◽  
Xue Jun Weng ◽  
Shi E Lin

Mechanical and vulcanization behaviors of styrene-butadiene rubber(SBR)/N330 and SBR/N330/PBMCN nanocomposites were investigated via partial replacement of SBR with pyrophyllite based modified composite nanopowder(PBMCN), which were prepared by melt mixing procedure. Results show a fairly good dispersion of PBMCN in the SBR/N330/PBMCN composites characterized by field-emission scanning electron microscope (FESEM). Mechanical and vulcanization behaviors of the as-abtained pruducts were measured according to GB/T 528-2009 and GB/T 16584-1996, respectively. Near properties in tensile strength, elongation at break and vulcanization behaviors were observed in SBR/N330/PBMCN nanocomposites when SBR was partially replaced by PBMCN for 8% mass fraction. A possible reinforcement mechanism of PBMCN to SBR/N330/PBMCN nanocomposites is also dicussed based on the experiment.


2012 ◽  
Vol 488-489 ◽  
pp. 612-616 ◽  
Author(s):  
Anyaporn Boonmahitthisud ◽  
Saowaroj Chuayjuljit

In this study, natural rubber/styrene butadiene rubber (NR/SBR) and NR/carboxylated styrene butadiene rubber (NR/XSBR) nanocomposites with carbon nanotube (CNT) were prepared by a latex compounding method. The dry weight ratio of either NR/SBR or NR/XSBR was fixed to 80/20 and the CNT loading in each blend was varied from 0.1 to 0.4 phr. The nanocomposite latices were cast into sheets on a glass mold and then cured at 80°C for 3 h. The tensile properties (tensile strength, modulus at 300% strain, elongation at break) and dynamic mechanical properties (storage modulus, loss tangent) of the vulcanizates were then evaluated. The results showed that the addition of CNT at a very loading could enhance the tensile strength, modulus at 300% strain and storage modulus of these two rubber bends in a dose dependent manner, except that the tensile strength peaked at an optimum filler level, declining at higher filler loadings, whilst the elongation at break deteriorated. Moreover, the tensile strength and modulus at 300% strain of the NR/XSBR nanocomposites appeared to be higher than those of the NR/SBR nanocomposites at the same CNT loadings.


2018 ◽  
Vol 26 (8-9) ◽  
pp. 454-460 ◽  
Author(s):  
Ahmad Fikri Abdul Karim ◽  
Hanafi Ismail

Thermoplastic elastomer composites of polystyrene (PS) blended with styrene–butadiene rubber (SBR)–filled wollastonite were prepared using a laboratory scale internal mixer. The compatibiliser used in this study was maleic anhydride (MAH). The torque developments, morphology, and mechanical properties such as tensile strength, elongation at break, Young’s modulus and impact strength were studied. PS/SBR/wollastonite composites with the addition of MAH had higher torque than PS/SBR/wollastonite composites without MAH. Tensile strength, impact strength and elongation at break were reduced by increasing filler loading, both for composites with and without MAH. Composites with MAH had higher tensile strength but lower impact strength and elongation at break as compared with composites without MAH. The Young’s modulus increased with the wollastonite loading, whereas at a similar wollastonite loading, composites with MAH exhibited higher values of Young’s modulus than composites without MAH. Scanning electron microscopy on fracture surfaces showed better filler–matrix adhesion for composites with MAH.


Sign in / Sign up

Export Citation Format

Share Document