scholarly journals Adapted versus Projected Machining Centers Energy Consumption for MQL Technique

2021 ◽  
Vol 7 (2) ◽  
pp. 78-87
Author(s):  
Augusto Dttmann ◽  
Jefferson De Oliveira Gomes

Cutting fluid application is a vital technique to achieve the expected result in most machining processes. However, besides having a high cost, the cutting fluid application also represents a risk to the environment due the oil chemical characteristics. The Minimum Quantity Lubrication (MQL) is an alternative when looking for reduction of oil consumption and a more environmentally friendly process. A literature review has shown that many predictive models of machine tool power consumption do not consider the consumption of the required air compressor in MQL. This paper’s motivation was testing these models to predict the energy consumption. It was observed that the amount of consumed energy in the cutting is lower when compared to the consumption of basic components of the machining center in both cases. Using the MQL, the tool life showed a decrease. However, it allows the feed to increase and reduces the energy consumption.

Author(s):  
Arul Kulandaivel ◽  
Senthil Kumar Santhanam

Abstract Turning operation is one of the most commonly used machining processes. However, turning of high strength materials involves high heat generation which, in turn, results in undesirable characteristics such as increased tool wear, irregular chip formation, minor variations in physical properties etc. In order to overcome these, synthetic coolants are used and supplied in excess quantities (flood type). The handling and disposal of excess coolants are tedious and relatively expensive. In this proposed work, Water Soluble Cutting Oil suspended with nanoparticles (Graphene) is used in comparatively less quantities using Minimum quantity lubrication (MQL) method to improve the quality of machining. The testing was done on Turning operation of Monel K500 considering the various parameters such as the cutting speed, feed and depth of cut for obtaining a surface roughness of 0.462μm and cutting tool temperature of 55°C for MQL-GO (Graphene oxide) process.


Author(s):  
Miguel Angel Rodriguez Cabal ◽  
Juan Gonzalo Ardila Marín ◽  
Juan Sebastian Rudas Florez

Energy consumption in machining processes has become a problem for today's manufacturing industry. The use of neural networks and optimization algorithms for modeling and prediction of consumption as a function of the cut-off parameters in processes of this type has aroused the interest of research groups. The present work used artificial neural networks (ANN) to predict the energy consumption of a Leadwell V-40iT® five-axis CNC machining center, based on experimental data obtained through a factorial experimental design 53. ANN was programed in Matlab®. From the study was concluded that the depth per pass (Ap) is the variable that has the most influence on the prediction model of energy consumption with a 77% of relative importance, while the feed rate is the least relevant with 9% of importance.


2018 ◽  
Vol 7 (2) ◽  
pp. 116-120
Author(s):  
Amrit Pal ◽  
Hazoor Singh Sidhu

Owing to environmental concerns and growing regulations over contamination and pollution, the demand for renewable and biodegradable cutting fluids is rising. The aim of this paper is to review the eco-friendly and user-friendly minimum quantity lubrication (MQL) technique using vegetable-based oil and solid lubricant in different machining processes. It has been reported in various literature that the minimum quantity lubrication (MQL) method using vegetable oil-based cutting fluid shows superior performance as compared to dry and wet machining. The major benefits of MQL are reduction of consumption of cutting fluid, cost saving, reduction of impact to the environment and improved overall performances in cutting operation and the surface quality. To achieve improved thermal conductivity researchers focused attention on nano fluids. Nano fluids are nano-metered sized colloidal suspensions in the base fluid like water, oil, glycol, etc. The application of nano fluid controls the tool wear by reducing the temperature. Impingement of the nano-particles with high pressure in MQL enables entry of nano-particles at the tool chip interface. Thus it reduces the coefficient of friction and improves machining performance significantly.


Author(s):  
Ganesh Bharambe ◽  
Prakash Dabeer ◽  
Kumar Digambar Sapate ◽  
Suresh M. Sawant

Processing of metals in industries is lifeline of economy of country, which helps to shape the country. Energy saving in this process is attributed to both the parts ie process of machining and energy consumed in machine tools itself. The process of material removal had experienced lot of improvements in last few decades. This consists of developments in pre-machining processes, metal cutting methods and developments in cutting theories and cutting tools. Cutting fluid is one of challenging field to yield more favourable results. Manufacturing practices beyond its existing limits, process and machine automations, using the previous data for improving machinabilities, optimizing through relative benchmarks (a market driven schemes) shall lead the manufacturing speed to a new high. Adaptibility of manufacturing set up to absorb new requirement will also be a controlling factor for acceleration of manufacturing processes. This paper discusses the efforts to reduce the energy to produce a product. Various methods are discussed to minimize the energy consumed for driving the machine components such as spindle, feeding device, lubricating system, cutting fluid system, indexing and tooling management, speed and feed controlling devices etc. Different requirements such as friction energy in braking action, speed reducing or cushioning will also consume certain amount of energy during its operations. Therefore one has to understand the various types of energy flows and classification of energy forms used from place to place. Study of constructional features of machines brings a lot of opportunities for savings in energy. The concepts of material handling, fluid handling like hydraulic and pneumatic circuits, lubrication system, shall also provide the opportunities for savings in energy consumption. Energy used for working of accessories whether they are required at that particular moments needs to be considered from time to time. There are few more methods for locating the chances for arresting the energy wastages and reducing specific energy consumption referring a particular process or function. Previous data generated for similar functions can be referred for comparison and efforts can be added to reduce the requirement of energy. Efficient and effective utilization of equipment shall open a fresh path for finding the energy reductions. Sustainability of machining processes can be ensured for future using the lean energy utilizations for productions. Authors have explained the live cases to demonstrate reduction in energy consumption. Few potential guidelines are also narrated in this line. Further few cases are discussed from literature survey which support and will help to pursue the target.


Author(s):  
A.M. Zetty Akhtar ◽  
M.M. Rahman ◽  
K. Kadirgama ◽  
M.A. Maleque

This paper presents the findings of the stability, thermal conductivity and viscosity of CNTs (doped with 10 wt% graphene)- TiO2 hybrid nanofluids under various concentrations. While the usage of cutting fluid in machining operation is necessary for removing the heat generated at the cutting zone, the excessive use of it could lead to environmental and health issue to the operators. Therefore, the minimum quantity lubrication (MQL) to replace the conventional flooding was introduced. The MQL method minimises the usage of cutting fluid as a step to achieve a cleaner environment and sustainable machining. However, the low thermal conductivity of the base fluid in the MQL system caused the insufficient removal of heat generated in the cutting zone. Addition of nanoparticles to the base fluid was then introduced to enhance the performance of cutting fluids. The ethylene glycol used as the base fluid, titanium dioxide (TiO2) and carbon nanotubes (CNTs) nanoparticle mixed to produce nanofluids with concentrations of 0.02 to 0.1 wt.% with an interval of 0.02 wt%. The mixing ratio of TiO2: CNTs was 90:10 and ratio of SDBS (surfactant): CNTs was 10:1. The stability of nanofluid checked using observation method and zeta potential analysis. The thermal conductivity and viscosity of suspension were measured at a temperature range between 30˚C to 70˚C (with increment of 10˚C) to determine the relationship between concentration and temperature on nanofluid’s thermal physical properties. Based on the results obtained, zeta potential value for nanofluid range from -50 to -70 mV indicates a good stability of the suspension. Thermal conductivity of nanofluid increases as an increase of temperature and enhancement ratio is within the range of 1.51 to 4.53 compared to the base fluid. Meanwhile, the viscosity of nanofluid shows decrements with an increase of the temperature remarks significant advantage in pumping power. The developed nanofluid in this study found to be stable with enhanced thermal conductivity and decrease in viscosity, which at once make it possible to be use as nanolubricant in machining operation.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


2020 ◽  
Vol 13 ◽  
Author(s):  
Gaurav Gaurav ◽  
Abhay Sharma ◽  
G S Dangayach ◽  
M L Meena

Background: Minimum quantity lubrication (MQL) is one of the most promising machining techniques that can yield a reduction in consumption of cutting fluid more than 90 % while ensuring the surface quality and tool life. The significance of the MQL in machining makes it imperative to consolidate and analyse the current direction and status of research in MQL. Objective: This study aims to assess global research publication trends and hot topics in the field of MQL among machining process. The bibliometric and descriptive analysis are the tools that the investigation aims to use for the data analysis of related literature collected from Scopus databases. Methods: Various performance parameters are extracted, such as document types and languages of publication, annual scientific production, total documents, total citations, and citations per article. The top 20 of the most relevant and productive sources, authors, affiliations, countries, word cloud, and word dynamics are assessed. The graphical visualisation of the bibliometric data is presented in terms of bibliographic coupling, citation, and co-citation network. Results: The investigation reveals that the International Journal of Machine Tools and Manufacture (2611 citations, 31 hindex) is the most productive journal that publishes on MQL. The most productive institution is the University of Michigan (32 publications), the most cited country is Germany (1879 citations), and the most productive country in MQL is China (124 publications). The study shows that ‘Cryogenic Machining’, ‘Sustainable Machining’, ‘Sustainability’, ‘Nanofluid’ and ‘Titanium alloy’ are the most recent keywords and indications of the hot topics and future research directions in the MQL field. Conclusion: The analysis finds that MQL is progressing in publications and the emerging with issues that are strongly associated with the research. This study is expected to help the researchers to find the most current research areas through the author’s keywords and future research directions in MQL and thereby expand their research interests.


Author(s):  
Xingzheng Chen ◽  
Congbo Li ◽  
Ying Tang ◽  
Li Li ◽  
Hongcheng Li

AbstractMechanical manufacturing industry consumes substantial energy with low energy efficiency. Increasing pressures from energy price and environmental directive force mechanical manufacturing industries to implement energy efficient technologies for reducing energy consumption and improving energy efficiency of their machining processes. In a practical machining process, cutting parameters are vital variables set by manufacturers in accordance with machining requirements of workpiece and machining condition. Proper selection of cutting parameters with energy consideration can effectively reduce energy consumption and improve energy efficiency of the machining process. Over the past 10 years, many researchers have been engaged in energy efficient cutting parameter optimization, and a large amount of literature have been published. This paper conducts a comprehensive literature review of current studies on energy efficient cutting parameter optimization to fully understand the recent advances in this research area. The energy consumption characteristics of machining process are analyzed by decomposing total energy consumption into electrical energy consumption of machine tool and embodied energy of cutting tool and cutting fluid. Current studies on energy efficient cutting parameter optimization by using experimental design method and energy models are reviewed in a comprehensive manner. Combined with the current status, future research directions of energy efficient cutting parameter optimization are presented.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Shahin Haghnazari ◽  
Vahid Abedini

AbstractThis paper presents an effort to model the process parameters involved in turning of alloy steel AISI 4340 workpiece material with Al2O3 and CuO hybrid nanofluids using the minimum quantity lubrication (MQL) method. In this paper, the effect of mixing two nanoparticles (Al2O3 and CuO) with different weight percent in environmentally friendly water-based cutting fluid, the rotational speed, and the feed rate has been investigated on the surface roughness and the machining forces using the response surface method. The results of the experiments show that the hybrid nanofluid containing 0.75 CuO with 0.25 Al2O3 has the best output for the machining forces and the surface roughness. Also, in the best composition of the nanoparticles (0.75 CuO with 0.25 Al2O3), the lowest value of machining forces has been achieved at a feed rate of 0.08 mm per revolution and the rotational speed 1000 rpm as well as the lowest value of the surface roughness at a feed rate of 0.08 mm per revolution and the rotational speed 710 rpm.


Sign in / Sign up

Export Citation Format

Share Document