scholarly journals Safety Helmet Implementation with Centralized Information System on Remote Monitoring Applications

Author(s):  
Alvinas Deva Sih Illahi ◽  
Anatasya Bella ◽  
Sugondo Hadiyoso ◽  
Suci Aulia

Personal Protective Equipment (PPE) is standard equipment that required to ensure safety of workers. PPE equipment that used during work such as: Safety helmet, safety glass, and ear plug. PPE that being used by workers doesn’t informative yet, only serve as personal protective so evacuation prevention still looks difficult to do prior accident happened. In this research, Safety Helmet Project has been implemented with pulse sensor, temperature sensor, carbon monoxide gas sensor, and transmission media which able transmitting data to control and monitoring center. The system also supports multiuser monitoring applications that can be accessed simultaneously through the internet network. Based on test results, the comparison of measurement gap with standard tool has been obtained as temperature sensor is 0,07%, heart sensor is ± 4%. Accuracy level for temperature sensor and heart rate are 99,67% and 95,45% by various condition of test. Another test is delay of the transmitting sensor data to the website around ± 10 seconds and controlling around ± 5 seconds.

2013 ◽  
Vol 344 ◽  
pp. 107-110
Author(s):  
Shun Ren Hu ◽  
Ya Chen Gan ◽  
Ming Bao ◽  
Jing Wei Wang

For the physiological signal monitoring applications, as a micro-controller based on field programmable gate array (FPGA) physiological parameters intelligent acquisition system is given, which has the advantages of low cost, high speed, low power consumption. FPGA is responsible for the completion of pulse sensor, the temperature sensor, acceleration sensor data acquisition and serial output and so on. Focuses on the design ideas and architecture of the various subsystems of the whole system, gives the internal FPGA circuit diagram of the entire system. The whole system is easy to implement and has a very good promotional value.


Author(s):  
P. W. Rusimamto ◽  
Endryansyah Endryansyah ◽  
L. Anifah ◽  
R. Harimurti ◽  
Y. Anistyasari

The purpose of this research is to monitor the temperature by applying arduino pro mini and ESP32 cam using IoT technology which is connected to a web interface. Arduino is used as the main brain of the system where arduino will read data from the MLX90614-ACF temperature sensor. Sensor data will continue to be sent to the server by arduino via the ESP32 cam module. This tool can also take pictures and send images automatically at the same time when measuring temperature. The captured image will automatically be sent to the PC/laptop monitor screen via the website. The website is used to display and monitor the results of temperature measurement data and display the image results from the ESP32 cam. The process of taking photos and measuring body temperature is done automatically. Users can also view data from sensors and photo data sent by arduino and ESP32 cam via the provided web interface. From the test results, this system has been running well where all sensor data is sent and can be displayed on the website. Images and measurement data results are sent to the monitor screen via the website interface with a measurement accuracy of 99.6%.


2020 ◽  
Vol 3 (2) ◽  
pp. 103-113
Author(s):  
Rachmad Ikhsan ◽  
Effendi Effendi

Roasting coffee manually is widely applied by coffee producers. This process takes a very long time and is less efficient in terms of productivity for industry standards. This machine  is equipped with a thermocouple sensor as a temperature sensor that will measure the temperature in the roasting cylinder, then equipped with a timer as a reminder of roasting time that ranges from 15 minutes at a temperature of 200 degrees Celsius, this machine  is also equipped with android as a timer controller on the coffee roaster machine. This machine is also equipped with a microcontroller and Bluetooth as a media transmitter and data receiver. From the test results obtained data that Bluetooth can be used for data communication between the microcontroller and Android with a distance of 30 meters in the room, and 12 meters outside the room. If it exceeds that distance, then Bluetooth will not respond back


2011 ◽  
Vol 243-249 ◽  
pp. 258-262
Author(s):  
Jun Chen ◽  
Jia Lv ◽  
Qi Lin Zhang ◽  
Zhi Xiong Tao ◽  
Jun Chen

Laminated glass has been increasing widely used in high rise buildings as a kind of safety glass in recent years. So we should analyze its material property. In this paper, we use flexural experiments and ANSYS program to analyze the main factors that affect the flexural capacity of the laminated glass. The test results show that the flexural capacity is closely related to film. And the ANSYS program had got good agreement with the experimental results. Comparison of experimental results with calculated ones indicates that the current design code will lead to conservative results and the equivalent thickness of laminated glasses provided in the code should be further discussed.


2018 ◽  
Vol 164 ◽  
pp. 01017 ◽  
Author(s):  
Jalinas ◽  
Wahyu Kusuma Raharja ◽  
Bobby Putra Emas Wijaya

The heart is one of the most important organs in the human body. One way to know heart health is to measure the number of heart beats per minute and body temperature also shows health, many heart rate and body temperature devices but can only be accessed offline. This research aims to design a heart rate detector and human body temperature that the measurement results can be accessed via web pages anywhere and anytime. This device can be used by many users by entering different ID numbers. The design consists of input blocks: pulse sensor, DS18B20 sensor and 3x4 keypad button. Process blocks: Arduino Mega 2560 Microcontroller, Ethernet Shield, router and USB modem. And output block: 16x2 LCD and mobile phone or PC to access web page. Based on the test results, this tool successfully measures the heart rate with an average error percentage of 2.702 % when compared with the oxymeter tool. On the measurement of body temperature get the result of the average error percentage of 2.18 %.


2013 ◽  
Vol 433-435 ◽  
pp. 1563-1566
Author(s):  
Jian Lin Zhang

An intelligent thermometer system design is presented in this paper. There are temperature sensor module, data collection module, data processing module, keyboard number tube module, voice module and LCD display module in this system. Due to excellent performance of temperature sensor, temperature sensor is used in system to obtain the temperature, transform the voltage, amplify OP precisely, and get 12 bits accuracy of samples. In order to make the system interface friendly, embedded software is developed to realize such functions as alarm temperature settings, LED screen display, audio playback and so on.


This study developed an automated machine that automatically controls the feeding routine of fish by checking four parameters that will serve as a prerequisite before dispensing the required amount of commercial feeds. The parameters to be checked are time, precipitation, the water temperature of the pond, and behavior of the fishes. The machine is also capable of notifying the owner or caretaker via text message if fishes have been fed successfully or not and if the level of the feeds is low. The machine utilizes sensors, namely a raindrop sensor, temperature sensor, and water flow sensor in which data are gathered through the aid of a microcontroller. After undergoing several trials, it was revealed that the fish feeding machine was able to implement the capabilities of the manual process of feeding done by a fish farmer. It also dispensed the required weight of feeds on time after satisfying the parameters. The machine was also reliable in terms of sending notifications to the owner through text message since results convey that they were received within 10 seconds if the signal is fine.


2015 ◽  
Vol 7 (2) ◽  
pp. 2089-2108 ◽  
Author(s):  
Lei Wang ◽  
Ranran Yang ◽  
Qingjiu Tian ◽  
Yanjun Yang ◽  
Yang Zhou ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
pp. 17-28
Author(s):  
Esraa Youssef Salem ◽  
Menna Y. Zain ◽  
Mira Alfons

Lack of communication can be seen in many aspects, such as public health, and recycling. We found that in public health people suffer from lack of facilities and it may lead to death, but building new hospitals is not the right solution, but improved communication is. To solve both problems with a simple solution, the Internet of Things (IoT) had to be involved. So, we proposed a solution, which is a WHD (wearable health device) that measures temperature and heart rate for the patient and compares them to a database, it consists of Arduino Nano wired to both LM35 temperature sensor and pulse sensor. The readings are displayed on an OLED screen, as well as on a mobile application called ThingView. If the readings are abnormal, an action would be taken either to contact a relative or the ambulance, depending on its severity. It would decrease the trips to hospitals. We have tested for the device's efficiency and sensor calibration, and the results were promising. The competence of the pulse sensor is very high as its relative error is ±0.07. The temperature sensor (LM35) has very low relative error which is ±0.00356. The final cost was computed to be $26.5.


Sign in / Sign up

Export Citation Format

Share Document