scholarly journals PHOTONIC CRYSTAL FIBRES DESIGN USING A MULTICRITERIA BASED SOFTWARE

Author(s):  
I. Sassi ◽  
N. Belacel ◽  
Y. Bouslimani ◽  
H. Hamam

The single-mode optical fiber used currently in communication systems starts showing many limitations especially for the high rates. Several physical phenomena related to the optical propagation are the cause of these limitations. The use of photonic crystal fibers (PCF) makes it possible to control most of these phenomena. In this paper, a multicriteria method is used for the design of the photonic crystal fiber with the user-defined optical proprieties. This method combines the deductive and the inductive learning and it is introduced for the first time in the field of optical fibers. This multicriteria method proves to be a powerful tool for the PCF fibers design.

2020 ◽  
Vol 1002 ◽  
pp. 290-299
Author(s):  
Raghad Hani ◽  
Bushra R. Mahdi ◽  
Ayad Z. Mohammad

Zinc is one of the important material in human blood because of its effect in defensive system work for properly and it plays an important role in growth, wound healing Medically zinc concentration effect directly in skin health so it's important to make a sensor for discover zinc and its concentration change in human blood for each of male and female. Optical fibers are used as a sensor for detecting zinc and its concentration by transmitted laser signal through the optical fiber by using different types (single mode fiber SMF, photonic crystal fiber PCF) by studying the results of output laser the detection can be seen for zinc concentration change, the design of small PCF which the same LMA_10 but smaller in its radius of core and cladding even the distance between cores. The smallest PCF size has the best detection for all zinc concentration change in blood all that was done by comsol Multiphysics 5.4 simulation program


2014 ◽  
Vol 62 (4) ◽  
pp. 683-689 ◽  
Author(s):  
K. Barczak

Abstract The phenomenon of optical birefringence in optical fibers is caused by external factors and stress induced by the manufacturing process. This optical birefringence makes it difficult to apply optical fibers as a polarimetric sensors head. Author of this paper, proposes the application of index guiding photonic crystal fibers because stress values in a fiber core caused by internal and external factors are lower. In this paper investigation results extended in comparison with the previous author’s investigations are presented. This extension relies on investigation of magnetooptic for wavelength 405 nm. On the basis of experimental results optimal work points of optical sensing fibers were determined.


2014 ◽  
Vol 11 (3) ◽  
pp. 1250-1256
Author(s):  
Baghdad Science Journal

Hollow core photonic bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. Dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in the silica/air microstructures, and partly due to the possibility of making complex refractive-index structure over the fiber cross section. In this paper the fundamental physical mechanism has been discussed determining the dispersion properties of PCFs, and the dispersion in a gas filled hollow core photonic crystal fiber has been calculated. We calculate the dispersion of air filled hollow core photonic crystal fiber, also calculate the dispersion of N2 gas filled hollow core photonic crystal fiber and finally we calculate the dispersion of He gas filled hollow core photonic crystal fiber.


2016 ◽  
Vol 1 ◽  
pp. 3-13
Author(s):  
Haider Ali Muse Ali Muse

The development of all optical communications could benefit from the index guiding photonic crystal fibers. In communication the photonic crystal fibers could provide many new solutions. Conventional optical fibers have within the last decades revolutionized the communications industry and it is today a mature technology being pushed to its limit with respect to properties such as losses, single mode operation and dispersion. The spectra have been used by others to develop optical frequency standards. The process can potentially be used for frequency conversion in fiber optic network. In this system the dispersive properties can be controlled by the optical lattice making it possible to achieve phase-matched four wave mixing, like look the process taking place in the photonic crystal fibers. In this paper we will discuss the use of photonic crystal fibers in communications.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Jian Ju ◽  
Wei Jin

This paper discusses the applications of photonic crystal fibers (PCFs) for strain and temperature measurement. Long-period grating sensors and in-fiber modal interferometric sensors are described and compared with their conventional single-mode counterparts. The strain sensitivities of the air-silica PCF sensors are comparable or higher than those implemented in conventional single-mode fibers but the temperature sensitivities of the PCF sensors are much lower.


2014 ◽  
Vol 28 (12) ◽  
pp. 1442002 ◽  
Author(s):  
Enrico Coscelli ◽  
Annamaria Cucinotta

The impact of thermally-induced refractive index changes on the single-mode (SM) properties of large mode area (LMA) photonic crystal fibers are thoroughly investigated by means of a full-vector modal solver with integrated thermal model. Three photonic crystal fiber designs are taken into account, namely the 19-cell core fiber, the large-pitch fiber (LPF) and the distributed modal filtering (DMF) fiber, to assess the effects of the interplay between thermal effects and the high-order mode (HOM) suppression mechanisms exploited in order to obtain effectively SM guiding. The results have shown significant differences in the way the SM regime is changed by the increase of heat load, providing useful hints for the design of LMA fibers for high power lasers.


2016 ◽  
Vol 37 (2) ◽  
Author(s):  
Anup Karak ◽  
Dipankar Kundu ◽  
Somenath Sarkar

AbstractFor a range of fiber parameters and wavelengths, the splice losses between photonic crystal fiber and a single mode fiber are calculated using our simplified and effective model of photonic crystal fiber following a recently developed elaborate method. Again, since the transverse offset and angular mismatch are the serious factors which contribute crucially to splice losses between two optical fibers, these losses between the same couple of fibers are also studied, using our formulation. The concerned results are seen to match fairly excellently with rigorous ones and consistently in comparison with earlier empirical results. Moreover, our formulation can be developed from theoretical framework over entire optogeometrical parameters of photonic crystal fiber within single mode region instead of using deeply involved full vectorial methods. This user-friendly simple approach of computing splice loss should find wide use by experimentalists and system users.


2011 ◽  
Vol 233-235 ◽  
pp. 3000-3004
Author(s):  
Hsi Hsin Chien ◽  
Kung Jeng Ma ◽  
Yun Peng Yeh ◽  
Choung Lii Chao

Polymer based photonic crystal fibers with low cost manufacturability, and the mechanical and chemical flexibility offer key advantages over traditional silica based photonic crystal fibers. PMMA photonic crystal fiber was fabricated by stacking an array of PMMA capillaries to form a preform, and followed by fusing and drawing into fiber with a draw tower. The air hole diameter and fraction of photonic crystal fiber can be manipulated by the thickness of PMMA capillaries and drawing temperature. The measurement of mechanical properties was performed by universal testing machine. The air core guiding phenomena was observed in air-core PMMA photonic crystal fiber. The ultimate tensile strength of PMMA photonic crystal fiber increases with the increase of the air-hole fraction. The mechanical strengths of all the microstructured optical fibers are higher than those of traditional PMMA fibers. This can be attributed to the introduction of more cellular interfaces which hinder the crack propagation and hence improve the mechanical strength. The plastic extension of PMMA microstructured optical fiber decreases with the increase of the air-hole fraction. Overall, the mechanical flexibility of PMMA microstructured optical fiber is superior than that of traditional PMMA optical fibers.


Nanophotonics ◽  
2013 ◽  
Vol 2 (5-6) ◽  
pp. 355-368 ◽  
Author(s):  
Ana M.R. Pinto ◽  
Manuel Lopez-Amo

AbstractA review on all-fiber lasers based on photonic crystal fibers is presented. Photonic crystal fibers present improved features beyond what conventional optical fibers can offer. Due to their geometric versatility, photonic crystal fibers can present special properties and abilities which can lead to enhanced lasing structures. A brief description of photonic crystal fibers and fiber laser’s properties is presented. All-fiber laser structures developed using photonic crystal fibers are described and divided in two groups, depending on the cavity topology: ring cavity fiber lasers and linear cavity fiber lasers. All-fiber lasers applications in the photonic crystal fiber related sensing field are described.


2021 ◽  
Author(s):  
mohammed Salim Jasim

Abstract Photonic crystal fibers (PCFs) with periodic structure, are a never-ending and constantly evolving. in this study was designed fiber photonic crystal is proposed and proven through the Matlab program, which employs the Split-Step Fourier method (SSFM). Among the consequences demonstrated and studied are the solitons in different order, The impact of changing the radius of air holes on the geography of solitone propagation during fiber has studied, and get supercontinuum generation by increasing the value of radius affecting the third-order soliton. This spectral expansion has important in many modern applications, including medical, industrial and military, as well as have an important role in communication systems.


Sign in / Sign up

Export Citation Format

Share Document