scholarly journals Production of Bioethanol from Waste Potato

Author(s):  
Merve Duruyurek ◽  
Cihan Dusgun ◽  
Mehmet Fuat Gulhan ◽  
Zeliha Selamoğlu

Using primary energy sources in World as fossil fuels, causes air pollution and climate change. Because of these reasons, people looking for renewable energy suppliers which has less carbondioxide and less pollution. Carbon in biofuels is producing from photosynthesis. For this, burning biofuels don’t increase carbondioxide in atmosphere. Scientists predict that plants with high carbonhydrate and protein contents are 21. centuries biofuels. Potatoes are producing over 280 million in whole world and Turkey is 6th potato producer. Turkey produces 5250000 tonne of potatoes. Approximately 20% of potatoes are waste in Niğde. Our study aimed to produce bioethanol from Solanum tuberosum by using the yeast Saccharomyces cerevisiae. As a result renewable energy sources can be produced from natural wastes.

Author(s):  
Gerardo Gordillo ◽  
Kalyan Annamalai

The increase in air pollution caused by combustion of fossil fuels demands the exploration of renewable energy sources in order to mitigate the dependence on fossil fuels. Research includes the efforts to partially replace fossil fuels with renewable energy-sources in thermal conversion processes in order to reduce the emission of CO2. The animal wastes can be considered as biomass fuels since their properties are almost similar to ration fed to animals. Concentrated animal feeding operations (CAFOs) such as cattle feedlots and dairies produce a large amount of feedlot manure or feedlot biomass (FB) and dairy manure or dairy biomass (DB), which may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Both FB and DB are grouped under cattle manure or cattle biomass (CB). The concentrated production of low quality CB at these feeding operations can serve as a good feedstock for locally based gasification for syngas (CO and H2) production and subsequent use in combined heat and power generation. If thermal gasification technology is developed for DB fuels, the environmental impact from both animal feeding operations and fossil-fuels could be mitigated. The current paper presents experimental results obtained from adiabatic fixed-bed gasification of DB using a 10 KW fixed bed counter-flow gasifier and air-steam for partial oxidation. A mass spectrometer (ProLab Thermo ONIX) was used to analyze the gas composition continuously and at real time. The effect of the operating parameters studied, which includes equivalence ratio (1.6 < Φ < 6.4) and steam to fuel (S:F) ratio (0.4 < S:F < 0.8, on the yields of gases, char, and tar are discussed. Also, results from gasification of dairy biomass–ash blend (DB-Ash) and dairy biomass Wyoming coal blend (DB-WYC) is presented for comparison effects. In general, for the set of experiments performed using DB, the gas yield was 1.54 to 5.30 dry tar-free kg of gases per each kg of DAF DB gasified while the char production ranged from 0 to 0.18 kg of char per DAF kg of DB gasified. The average of tar concentration in gases leaving the gasifier was about 80 g/ SATP m3.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Isak Karabegović

It is well-known that, in the past decades, the burning of fossil fuels was identified as the major cause of climate change. Climate change mitigation is becoming a central concern of global society. Limiting global warming to below 2 °C above the temperature of the pre-industrial period is the key to preserving global ecosystems and providing a secure basis for human activities, as well as reducing excessive environmental change. The ambitions increased at an accelerated pace with a dramatic expansion of net zero-emission targets. Increasing pressure from citizens and society has forced countries to intensify their climate plans, while the private sector has bought a record amount of renewable energy. An energy system based on fossil fuels must be replaced by renewable energy with low carbon emissions with improved energy efficiency. That applies to all consumers of fossil energy: cities, villages, building sectors, industry, transport, agriculture, and forestry. The paper explores and presents the strategy of energy development of renewable energy sources in the world. The application of new technologies that have led to developing renewable energy sources is presented in detail: wind energy, solar energy, small hydropower plants, biomass, and their increase in the total share of energy production, i.e., reduced fossil fuel use in energy production. Investments in new technologies used in renewable energy sources have led to increases in employment worldwide. Analysis of the trend of increased energy production from RES (Renewable Energy Sources) with investment plans, the employment rate for each energy source, and the development of renewable energy sources in the coming period are provided.


2021 ◽  
Vol 101 ◽  
pp. 01010
Author(s):  
E.S. Romanova ◽  
A.A. Masalkova

This research work is devoted to the issue of studying the key risks of switching to renewable energy sources. The relevance of the topic of work is determined by the fact that, according to climatologists [5], climate change, which has a negative impact on the environment, is caused by the emission of greenhouse gases such as carbon dioxide (CO2). For this reason, measures to prevent or reduce greenhouse gas emissions are at the heart of the energy transition. International treaties such as the Kyoto Protocol and the Paris Agreement lay the foundations for global action to combat climate change and implement a fourth energy transition. The energy transition is characterized by a number of incentives and barriers. Despite the fact that there are many scenarios for the development of the global energy sector by 2050, the expected transformations of the energy market lead to a significant redistribution of the ratio of the shares of hydrocarbon sources and renewable energy sources [16]. The trend towards fossil fuels is on the rise. These transformations in the market are determined not only by the climate agenda, but also by the concept of sustainable economic development.


2019 ◽  
Vol 25 (3) ◽  
pp. 117-125
Author(s):  
Rena Lovo ◽  
Eric Gilder ◽  
Ora Renagi ◽  
Dapsy Olatona

Abstract In this study, the authors carried out a detailed analysis of the technologies required for successful implementation of a sustainable renewable energy household power supply in Papua New Guinea or PNG (PNG is a Pacific Island nation, North of Australia) to free the country from fossil fuel dependency. The role of renewable energy sources in the recent PNG National Energy Policy covering 2018 to 2050 (unveiled at the 2018 March Energy Summit in Port Moresby by the PNG Minister of Energy) was also analysed. From the outcome of our recently concluded SERI 2018 Renewable Energy conference, we assembled into a single hypothetical ‘energy basket’ all the varied renewable ‘green’ energy sources within PNG (as estimated by our energy research groups). This paper estimates that there is sufficient renewable energy in PNG and advocates that these available green energy sources should be tapped, for they can go a long way in the quest for climate change mitigation. This research paper will articulate that shifting PNG’s and other Pacific Island nations’ energy reliance from fossil fuels and other non-renewable sources to renewable green and environmentally sustainable sources is not only achievable, but feasible within a reasonable time.


2021 ◽  
Author(s):  
Hemlal Bhattarai

Renewable energy sources are gaining momentum in power sector mainly to address the impacts of climate change as well as the risks associated with usage of fossil fuels or nuclear energy sources. Hydropower is one of the most promising renewable energy source-based power plant that hold significant shares globally. But there are series of risks associated with hydropower project when we talk about sustainability and needs are felt to critically understand the pertaining risks as well as protocols or measures to quantify the risks. Such measure will prove to be crucial in underlining the strategic measures from planning, construction and operation phases of hydropower keeping on account of its sustainability.


Author(s):  
Kumar Gaurav

A major share of world’s primary energy requirement is dependent on fossil fuels which is not only a non renewable source of energy and on the verge of extinction but also associated with serious environmental concerns. To combat these issues, alternative renewable energy sources are required. Certain examples of renewable energy sources are solar energy, wind energy, hydro and thermal energy, biofuels etc. Biomass is one such alternative which is freely and abundantly available. It is mainly the agricultural waste and vegetable waste which are perishable and create a lot of nuisance. Tapping this biomass for energy production will be beneficial in two ways; it will be an excellent source of energy generation and it will also help in waste management for environment protection. Energy generation from Biomass can take place either chemically or thermo-chemically. In the present paper advantages of anaerobic digestion of biomass are discussed for biogas production.


Author(s):  
Vasile Popa ◽  
Octavian Cocoș

Human society faces the great challenge of drastically reducing greenhouse gas emissions while providing increased amounts of energy. Although the share of renewable energy sources has increased in recent years, fossil fuels are still widely used and burning them makes large amounts of carbon dioxide enter the atmosphere. However, renewable energy sources may not be able to supply in time enough energy to replace fossil fuels. Under the circumstances, the question arises as to whether nuclear energy could play a significant role in mitigating climate change. Although there is still confidence and support for nuclear energy, it is unlikely that this energy source will make a greater contribution to combating climate change in the coming decades. This study analyzes the current state of nuclear energy, as well as the development prospects in the context of climate change and risks to the environment and human health.


2018 ◽  
Vol 3 (12) ◽  
pp. 112-118
Author(s):  
Van Huong Dong

Fossil fuels such as coal, oil, and gas meet most of the energy needs of people, but fossil fuels are unsustainable. The use of fossil fuels is one of the main causes of climate change and it has a serious impact on human health. In addition, these fuels are depleting, so the research and use of renewable energy sources such as wind, solar, geothermal or biomass is a necessity. In this paper, we mention some of the main reasons for promoting the development of renewable energy, the potential and the reality of renewable energy exploitation in Vietnam. In addition, we also outline the main reasons that hinder the development and exploitation of renewable energy sources in Vietnam.


2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Rita Bužinskienė

There have been many discussions in Lithuania about a strategy for reducing the impact of climate change. Members of the international community agree that reducing greenhouse gas emissions to the atmosphere is necessary to avoid dangerous climate change. The main greenhouse gas emissions from human activity are carbon dioxide. Carbon dioxide is mainly produced by combustion of fossil fuels, which are currently used: natural gas, coal, oil, peat, etc. Fossil fuels are still the main source of energy. The amount of energy produced and consumption from renewable energy sources (RES) is increasing both in Lithuania and in Europe. According to the Directive (2009/28/EU) Lithuania has a legally binding target in the year 2020. The share of renewable energy would account for at least 23% of the total final energy consumption of the country. The share of renewable energy would account for at least 10% of the final energy consumption in the transport sector. Lithuania achieved its target and this indicator was 23.9% in 2014. According to the Eurostat data, the share of RES produced from renewable energy sources in the total energy balance is increasing annually. In 2007 this indicator was only 4.7% and it has grown 4 times in 2016. The production of electricity from renewable energy sources satisfied the country’s energy demand by 18.9% in Lithuania. This is the best index so far. Wind energy is the most popular type of green energy, which has been growing at a rate of 5 times in this period. Promotion of the use of renewable resources is provided in the Republic of Lithuania Law on Renewable Energy and the long-term development of the use of renewable resources is provided for in the National Energy Strategy. At this moment Lithuania is a fuel importing country, but in the future Lithuania should produce about 70% of electricity itself. It is forecasted that in 2020 electricity generation in the country should make up 35% of the demand, in 2030 it should be 70%, and in 2050 it should reach 100%. From renewables we should receive a large, almost 80% share of energy. And gas will be a transitional fuel by 2050. The project of strategy states that energy from renewable sources will become a major component of all sectors: electricity, heat, cooling and transport. The objective is to achieve a 30% share of renewables in the final energy consumption balance in 2020, 45% in 2030, and 80% in 2050. The renewables should produce all heat energy and the share of green energy in transport should reach 50% at the end of 2050. The article focuses on the use of the potential of renewable energy sources from agricultural raw materials and their waste. The surplus of agricultural production makes it necessary to look for opportunities to reduce environmental pollution. The aim of the article is to assess the use of potential of renewable energy sources in Lithuania. The results of the analysis showed that increasing energy production is possible not only using wind, solar, water or geothermal energy, but by processing traditional agricultural and animal products and their waste: straw, grain crops, livestock or bird’s excrement, etc. It is recommended to look at the unconventional potential of raw materials, such as sewage sludge, spirits, molasses, etc. The use of biomass has potentially revealed alternatives to biofuels that underpin the use of different generations of biofuels. The use of biofuels in the long term should contribute to the slowdown in climate change.


Author(s):  
Arturo Lorenzoni ◽  
Laura Bano

- The promotion of electricity from renewable energy sources (RES) is a high European Union (EU) priority for several reasons, including the security and diversification of energy supply, environmental protection and social and economic cohesion. The EU Council's decision of 9 March 2007 points towards increasing renewable penetration to 20% of total primary energy supply by 2020 (binding target). There are both costs and benefits associated with the achievement of such an ambitious target. For renewable technologies, the industrial cost is often higher compared to other energy sources. however, due to learning curve effects and market diffusion, technology related costs are coming down considerably. In some cases, when the external costs are taken into account by the price system, renewables can now be close to competitive with fossil fuels. With particular reference to renewable electricity in Italy, its development is often hampered by burdensome and time consuming authorisation procedures with the consequence of a high "mortality" rate for the investments in the sector, leading to increased costs for the project management. Therefore, in these projects an important cost factor is the high cost of capital due to risk. The analysis of the various renewables' support mechanisms currently in place in the EU shows that some types of incentive have proven to be more efficient than others in reducing the risk perception of investors and financing institutions, therefore making projects less expensive by reducing the cost of capital (both debt and equity). Therefore the focus here is on the electricity generation costs of some renewable technologies and on the costs related to the "additional" risk perceived by investors/lenders in the sector. The authors estimate the additional cost of capital which investors pay when operating in a risky environment. Some policy indications are finally given to reduce the non-technology related costs for a faster and more efficient growth of the sector. JEL Class. L98, Q28, Q48 Key words: renewable energy, electricity cost, administrative procedures, system inefficiency


Sign in / Sign up

Export Citation Format

Share Document