scholarly journals Erzurum Daphan Sulama Birliği Birinci ve ikinci Etap Sulama Şebekesinin Performansının Değerlendirilmesi (2012-2016)

Author(s):  
Fatih Mehmet Kızıloğlu ◽  
Üstün Şahin ◽  
Serap Diler ◽  
Semih Öztaşkın

This study was carried out to evaluate the irrigation system performance of the first and second stage irrigation areas of Daphan Plain, which is constructed and transferred to Daphan Irrigation Association by The State Hydraulic Works in Daphan Irrigation Project area for the years 2012-2016. As a result of the research, it was determined that the annual net water supply ratio was between 7.10 and 9.90 for the real plant production area and 2.19 to 2.60 per year for the total schemes area which was ready to irrigation applications. The net water supply ratios were ranged from 3.20 to 4.20 for irrigated land while it was varied from 0.93 to 1.10 on the condition of whole area were planted. Sustainable irrigation area ratio is realized between 24.53% and 33.15% and the ratio of realized production values are between 19.34% and 26.13%. While the profitability ratio is between 4.30 and 9.28, the financial efficiency ratio is between 17.69% and 46.82% and the financial sufficiency ratio is between 106% and 145%, the collection rate of irrigation water fee is between 20.66% and 34.37%.

2020 ◽  
Vol 6 (2) ◽  
pp. 1-18
Author(s):  
Abdullah Azami ◽  
◽  
Jay Sagin ◽  
Sayed Hashmat Sadat ◽  
Hejratullah Hejran ◽  
...  

In Afghanistan, water is mostly used for agricultural purposes. The water supply chain requires updating to ensure its sustainability. Different irrigation methods – such as surface water based irrigation (via canals), groundwater based irrigation, and the Karez irrigation system – are applied across the country. Considering the compatibility of the Karez system with the environment, it can be deemed the most effective irrigation scheme, as it allows collecting a significant amount of groundwater and conveying it to land surface via sub-horizontal tunnels using gravity. This article analyzes Afghanistan’s Karez irrigation systems currently feeding water to over 170,000 ha of farmland with a potential to expand and become a component of sustainable water supply chain.


2011 ◽  
Vol 21 (2) ◽  
pp. 176-180 ◽  
Author(s):  
P. Chris Wilson ◽  
Joseph P. Albano

Nitrate-nitrogen (N) losses in surface drainage and runoff water from ornamental plant production areas can be considerable. In N-limited watersheds, discharge of N from production areas can have negative impacts on nontarget aquatic systems. This study monitored nitrate-N concentrations in production area drainage water originating from a foliage plant production area. Concentrations in drainage water were monitored during the transition from 100% reliance on fertigation using urea and nitrate-based soluble formulations (SF) to a nitrate-based controlled-release formulation (CRF). During the SF use period, nitrate-N concentrations ranged from 0.5 to 322.0 mg·L−1 with a median concentration of 31.2 mg·L−1. Conversely, nitrate-N concentrations during the controlled-release fertilization program ranged from 0 to 147.9 mg·L−1 with a median concentration of 0.9 mg·L−1. This project demonstrates that nitrate-N concentrations in drainage water during the CRF program were reduced by 94% to 97% at the 10th through 95th percentiles relative to the SF fertilization program. Nitrate-N concentrations in drainage water from foliage plant production areas can be reduced by using CRF fertilizer formulations relative to SF formulations/fertigation. Similar results should be expected for other similar containerized crops. Managers located within N-limited watersheds facing N water quality regulations should consider the use of CRF fertilizer formulations as a potential tool (in addition to appropriate application rates and irrigation management) for reducing production impacts on water quality.


2019 ◽  
Vol 50 (4) ◽  
pp. 198-207
Author(s):  
Ioannis Gravalos ◽  
Avgoustinos Avgousti ◽  
Theodoros Gialamas ◽  
Nikolaos Alfieris ◽  
Georgios Paschalidis

Water supply limits and continued population growth have intensified the search for measures to conserve water in urban gardening and agriculture. The efficiency of water use is depended on performance of the irrigation technologies and management practices. In this study, a robotic irrigation system was developed that consists of a moving bridge manipulator and a sensor-based platform. The manipulator constructed is partly using open-source components and software, and is easily reconfigurable and extendable. In combination to the sensor-based platform this custommade manipulator has the potential to monitor the soil water content (SWC) in real time. The irrigation robotic system was tested in an experimental soil tank. The total surface of the soil tank was divided by a raster into 18 equal quadrants. The water management for maintaining water content in the soil tank within tolerable lower limit (refill point) was based on three irrigation treatments: i) quadrants whose SWC is below the refill point are irrigated; ii) quadrants are irrigated only when the daily mean SWC of the tank is below the refill point and only for those whose actual SWC is lower than that limit; and iii) quadrants are irrigated every two days with constant amount of water. A comparison of the results of the three irrigation treatments showed that the second treatment gave less irrigation events and less applied water. Finally, we could conclude that the performance of the fabricated robotic system is appropriate and it could play an important role in achieving sustainable irrigation into urban food systems.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1579 ◽  
Author(s):  
Ahmed Elshaikh ◽  
Shi-hong Yang ◽  
Xiyun Jiao ◽  
Mohammed Elbashier

This study aims to offer a comprehensive assessment of the impacts of policies and institutional arrangements on irrigation management performance. The case study, the Gezira Scheme, has witnessed a significant decrease in water management performance during recent decades. This situation led to several institutional changes in order to put the system on the right path. The main organizations involved in water management at the scheme are the Ministry of Irrigation & Water Resources (MOIWR), the Sudan Gezira Board (SGB), and the Water Users Associations (WUAs). Different combinations from these organizations were founded to manage the irrigation system. The evaluation of these organizations is based on the data of water supply and cultivated areas from 1970 to 2015. The measured data were compared with two methods: the empirical water order method (Indent) that considers the design criteria of the scheme, and the Crop Water Requirement (CWR) method. Results show that the MOIWR period was the most efficient era, with an average water surplus of 12% compared with the Indent value, while the most critical period (SGB & WUAs) occurred when the water supply increased by 80%. The other periods of the Irrigation Water Corporation (IWC), (SGB & MOIWR), and (WUAs & MOIWR) had witnessed an increase in water supply by 29%, 63%, and 67% respectively. Through these institutional changes, the percentage of excessive water supply jumped from 12% to 80%. Finally, the study provides general recommendations associated with institutional arrangements and policy adoption to improve irrigation system performance.


Author(s):  
Ganesh Das ◽  
Sankar Saha ◽  
F. H. Rahman ◽  
Surajit Sarkar ◽  
Sujan Biswas ◽  
...  

Terai region of West Bengal fall under high rainfall region but 90% rainfall occurs in kharif season and drought observed during rabi season.  NICRA project started in the Cooch Behar District during 2011. The project area and plan of work were selected on the basis of participatory rural appraisal method. The experimental trial was conducted from 2011 to 2019. The objective of the experiment was to development of sustainable irrigation system through renovation of pond and its impact on crop production. It was found from the study that pond renovation has potential impact on increasing crop yield, cropping intensity, copping system and area of irrigation.


2016 ◽  
Vol 19 ◽  
pp. 25-30
Author(s):  
Basistha Adhakari

Many large irrigation projects in Nepal operate under command area development works that emphasize on-farm water distribution and management. These projects have specific design characteristics that were planned to comply with available water resources, climatic conditions, soil type, and water distribution technology. The water distribution technologies differ based on the design needs of each individual project and the design preferences of various foreign consulting firms. This article focuses on the issues of planning and designing water distribution systems of large irrigation systems at the irrigation service delivery level. The layout planning of an irrigation system is an important aspect of design for water distribution, typically guided by hierarchical system. This article also highlights the existing canal hierarchy of these systems and their appropriateness for efficient water distribution. Furthermore, the appropriateness of the structured system is also examined in the Sunsari Morang Irrigation Project. The article concluded with some suggestions for planning and designing command area development works of forthcoming large irrigation projects such as the Sikta Irrigation Project, the Babai Irrigation Project, and the Mahakali Irrigation Project Stage-III.HYDRO Nepal JournalJournal of Water, Energy and EnvironmentIssue: 19Page: 25-30


1996 ◽  
Vol 14 (4) ◽  
pp. 199-204 ◽  
Author(s):  
Helen H. Tyler ◽  
Stuart L. Warren ◽  
Ted E. Bilderback

Abstract An experiment with two leaching fractions (LF = volume of water leached ÷ volume of water applied) and two fertilizer rates was conducted to evaluate the effects of reduced irrigation volume in combination with reduced fertility on irrigation use efficiency, nutrient efficacy (retention), and plant growth. Rooted cuttings of Cotoneaster dammeri Schneid. ‘Skogholm’ were potted into 3.8 liter (#1) containers in a pine bark: sand substrate (8:1 by vol). Osmocote 24N-1.7P-5.8K (24-4-7) was topdressed at 3.5 g N or 1.75 g N per container at treatment initiation. The experiment, a RCBD with four replications was conducted for 100 days on a container-grown plant production area subdivided into 16 separate plots that allowed for the collection of all irrigation water leaving each plot. Twenty containers were placed in each plot. Irrigation water was applied daily to attain either a high LF of 0.4 to 0.6 or a low LF of 0.0 to 0.2. Irrigation water was applied in two cycles with a two hour rest interval between each application via pressure compensated spray stakes at a rate of 200 ml/min (0.28 in/min). Volume of effluent from each plot was measured daily and analyzed for NO3, NH4, and P. Low LF decreased irrigation volume and effluent volume by 44% and 63%, respectively, compared to high LF. Irrigation use efficiency [total plant dry weight (volume applied-volume leached)] by plants irrigated with low LF was 29% greater than high LF. Compared to high LF, low LF decreased cumulative NO3 and NH4 contents in effluent by 66% and 62%, respectively, for containers fertilized with 3.5 g N. Low LF also reduced cumulative P content in the effluent by 57% compared to high LF. Shoot and total plant dry weights produced with low LF were reduced 8% and 10%, respectively, compared to plants grown with high LF. Root dry weight was not effected by LF. Shoot, root, and total plant dry weights with 1.75 g N were reduced by 26%, 26%, and 28%, respectively compared to 3.5 g N. Nitrogen efficiency was higher when plants were fertilized with 3.5 g N regardless of LF. To maximize N absorption and minimize N losses requires a combination of maintaining an adequate N supply which is this study was 3.5 g N per 3.8 liter container in combination with a low LF.


2020 ◽  
Author(s):  
Sabrina Prochazka ◽  
Marta Luciani ◽  
Christopher Lüthgens

<p>The arid regions of the world occupy 46% of the total surface area, providing a habitat for 3 billion people. More than 630 million people are directly affected by desertification. Extreme events like droughts and flash floods increase the pressure on plants, animals and above all, humans and their settlements. In the context of a climate change with such far-reaching consequences, historical oases settlements stand out as best practice examples, because their water supply systems must have been adapted to the changing climate during the Holocene to guarantee the viability of the oases and their inhabitants. I will focus on the ancient oasis Qurayyah, located in the northwest of the Arabian Peninsula, a unique example in this context. Recent research has proven that, lacking a groundwater spring, the formation of a permanent settlement in Qurayyah was made possible mainly by surface-water harvesting, with local fracture springs potentially only providing drinking water. First numerical dating results for the water harvesting system from optically stimulated luminescence (OSL) dating of quartz confirm that the system was erected in a period characterized by changing climatic conditions from the Holocene climate optimum to the recent arid phase. This study aims to determine parameters and chronology of this sustainable irrigation system and intends to learn and understand how ancient settlers accomplished the construction of such a highly developed water supply system. To reach this research aim the irrigation system was reconstructed using field mapping and remote sensing techniques. It was shown that the reconstructed irrigation system worked as a flood irrigation system. Dams and channels were built to maximize the flooded area and at the same time to prevent catastrophic flooding under high discharge conditions. Contemporaneous historical irrigation systems in comparable size and complexity are known from Mesopotamia or Egypt. In addition to the system’s reconstruction, a new reverse engineering approach based on palaeobotany was developed for Qurayyah to reconstruct the climate conditions during the time of its operation. Compared to today’s precipitation of 32 mm per year in the research area, our results imply that the irrigation system was constructed in a time of significant climate change, because significantly higher amounts of precipitation would have been necessary to enable the cultivation of olive trees (reference plant for the reverse engineering approach), with a sufficient amount of water.</p>


Sign in / Sign up

Export Citation Format

Share Document