scholarly journals Development of lightweight polymeric-composite superstructure for a fast boat

2020 ◽  
Vol S-I (2) ◽  
pp. 242-249
Author(s):  
A. Korbova ◽  

This paper discusses the design of lightweight polymeric-composite superstructure for a fast boat (displacement up to 1 t) with solar panels powering its propulsion motor. The superstructure is made up by composite beams with sufficient dynamic stiffness and strength to withstand operational loads. External load was defined as spectral, inertial, transmitted as accelerations or displacements from hull to the superstructure via bearing joints. The material was GFRP with foam filler. The simulation is performed as per finite-element method in linear spatial beam formulation, solving the problems of natural vibrations and maximum dangerous response to spectral kinematic effect as a superposition of modes weighed by spectral coefficients. The study presents calculation for the initial superstructure design and its variations, to analyse sensitivity of dynamic and spectral responses to design changes. The study implements a new technique of generating a model of composite binary profile on single mesh. The results of this analysis, further verified on a more detailed idealization and supplemented by a calculation of inertial disturbances due to pitching and rolling, will yield the methodology for more computer-efficient design of lightweight superstructures for small boats made of polymeric composite materials.

2019 ◽  
Vol 6 (3) ◽  
pp. 269-283
Author(s):  
Nicolas Antoni

Abstract In structural analysis, it is of paramount importance to assess the level of plasticity a structure may experience under monotonic or cyclic loading as this may have a significant impact, particularly in fatigue analysis for singular areas. For efficient design analyses, it is often searched for a compromise in accuracy that consists in correcting a purely elastic analysis, generally simpler and faster to obtain compared to a full non-linear Finite Element (FE) analysis involving elastic-plastic behaviour, to estimate the actual elastic-plastic solution. There exists a great number of correction techniques in the literature among which the most famous and commonly used are Neuber and ESED energy-based methods. Nonetheless, both of them are known to provide respectively upper and lower bounds of the exact solution in most cases, with a relative deviation depending on the level of multiaxiality and on the amount of stress redistribution due to yielding. The new methodology presented in this paper is based on the well-known multiaxial Radial Return Method (RRM) revisited using effective parameters approach. By essence, it is fast and can be applied either to analytical elastic problems or to more complex three-dimensional elastic FE analyses. The accuracy of the proposed method is assessed by direct comparison with results from Neuber and ESED methods on various examples. It is also shown for each of them that this new method is very good agreement with the exact elastic-plastic solution. Highlights A new technique of purely elastic solution correction is presented and evaluated. The proposed method relies on the modification of Return Radial Method (RRM) considering effective parameters in lieu of initial elastic tensor. The obtained equation preserves the simplicity and efficiency of other well-known energy-based methods such as Neuber and ESED. It is shown on several examples that the proposed technique is in very good agreement with the exact or FE elastic-plastic solution, with very low relative deviation.


2003 ◽  
Vol 785 ◽  
Author(s):  
Enrico L. Colla ◽  
Ganesh Suyal ◽  
Sandrine Gentil ◽  
Nava Setter

ABSTRACTAn high performance / inexpensive diskbender actuator was produced by combining efficient design and fabrication methods and a new technique to operate these actuators was developed and tested, which can enhance the displacement and force capabilities by almost a factor of 2 by using the same maximal driving voltage.The properties of these actuators are intermediate between those of standard bimorphs, used for very large displacements but providing rather small forces, and those of low voltage stack multilayers, which provide quite large forces but are generally heavier, larger and expensive for equivalent displacements. The absence of any external mechanical amplification mechanism and their geometry make these actuators particularly suitable for active vibration damping applications within buildings affected by perturbations of hundreds of μm or for noise control by emission of controlled sound in antiphase. The class of displacement/force, which can be obtained with suitably dimensioned actuators, provides sufficient high motion even for the lower audio frequency region (400–1500 Hz).In order to lower the driving voltages, multilayer diskbenders were also fabricated with the same technique. The number of layers does not influence the actuator displacement and force properties but the increased capacity of the actuator may require sophisticated driving amplifiers.


2013 ◽  
Vol 448-453 ◽  
pp. 1437-1445
Author(s):  
Emmanuel B. Balogun ◽  
Xu Huang ◽  
Dat Tran

There have been recent research interests in obtaining an optimum efficient design for the solar tracking system in published papers over the past three decades. This paper presents an in-depth overview of the assessment parameters and characteristics of various sensor devices employed to provide precise feedback control mechanism used in dynamic solar tracking systems. We found that the webcam sensor device has superior capability compared to other solar sensors devices. In conclusion, we propose a future research direction for a better efficiency and effective dynamic solar tracking system. Keywords: Solar tracking; Solar sensors; Solar panels; Overall output generated energy; Webcam; Photoresistors; Photodiodes; Feedback Control mechanism


Author(s):  
DESTI IKA SURYANTI ◽  
SRI RAMAYANTI ◽  
MOHAMMAD MUKHAYADI

ABSTRAKDesain satelit telah berkembang ke arah miniaturisasi untuk mengurangi biaya peluncuran. Satelit kecil menyediakan platform berbiaya rendah untuk misi luar angkasa. Salah satu permasalahan utama satelit kecil adalah terbatasnya ketersediaan daya. Karena ketersediaan daya diperlukan agar subsistem satelit dapat bekerja, maka pada proses desain satelit perlu dilakukan analisis dan estimasi ketersediaan daya selama satelit mengorbit dengan tetap mempertahankan kekompakan dan volume yang diberlakukan oleh standar. Penelitian ini bertujuan untuk mengetahui kondisi iluminasi matahari pada panel surya dari berbagai alternatif desain penempatan sehingga diperoleh sebuah desain yang efisien. Iluminasi maksimum sebuah panel surya triple junction yang terpasang secara body mounted pada satelit kurang lebih sebesar 60%. Berdasarkan hasil penelitian ini, kombinasi pemasangan 3 body mounted panel surya dan 2 simple deploy panel surya menghasilkan persentase iluminasi dua kali lipat dibandingkan 5 body mounted panel surya.Kata kunci: panel surya triple junction, iluminasi, body mounted, simple deploy, daya ABSTRACTSatellite design has envolved towards miniaturization to reduce launch costs. Small satellites provide a low-cost platform for space missions. One of the main problems with small satellites is the limited availability of power. Because the availability of power is needed so that the satellite subsystem can work, the satellite design process needs to analyze and estimated power availability as long as the satellite orbits while maintaining the compactness and volume imposed by the standard. This study aims to determine the conditions of solar illumination on solar panels from various alternative design placements in order to obtain an efficient design. Maximum illumination of triple junction solar panel mounted on a small satellite is approximately 60%. Based on the results of this study, the combination of installing 3 body mounted solar panels and 2 simple deploy solar panels produced twice the illumination percentage compared to 5 body mounted solar panels.Keywords: solar panel triple junction, illumination, body mounted, simple deploy, power


2012 ◽  
Vol 248 ◽  
pp. 190-196
Author(s):  
Zhuang Zhuang Liu ◽  
Zhi Feng Liu ◽  
Guo Ping An

Geometric mobiles is a new kinetic art which become a new technique combined with basic science and modern art. Geometric mobiles design and calculation by mechanics and mathematics in order to have a slowly and elegant movements. An innovative and efficient design method is first established based on virtual technology and polymorphs small cell centroid point analytical rule. The method reveals the intrinsic relationship between Geometric mobiles and mathematics & mechanics modeling, provides the mathematics foundation for art works innovative and next research.


2004 ◽  
Vol 11 (3-4) ◽  
pp. 271-280 ◽  
Author(s):  
M. Carfagni ◽  
P. Citti ◽  
L. Governi ◽  
M. Pierini

Vehicle noise and vibration levels are basic parameters in passenger comfort. Both static and dynamic stiffness of sheet metal parts is commonly increased by means of stiffening ribs. Vibrations are also reduced by adding a layer of damping material on the floor, the roof, the firewall and other parts of the vehicle. In common practice the panels to be treated are ribbed according to criteria based on the designer’s experience, rather than on well defined design procedures and are uniformly covered by a layer of damping material. However, these are not efficient design solutions, especially with regard to the effectiveness of vibration reduction and to weight containment. In this paper a novel approach to achieve an optimal distribution of stiffening ribs and damping material will be presented. The proposed method is based on a Genetic Algorithm (G.A.) procedure which takes into account both the vibroacoustic performance and the weight and cost reduction. A simple case study will be illustrated to demonstrate the capabilities of the developed procedure.


Author(s):  
Akram Abdellatif ◽  
Ali H. Ali ◽  
Mohamed E. El-sayed ◽  
Nermine M. Elhusseiny ◽  
Youmna Mabrouk ◽  
...  

AbstractThe solar panels installed on a CubeSat are considered the main energy source of a nanosatellites. The deployment mechanism of a solar panel must be analyzed and tested extensively. Any suggested solar panel design should present a low vibrating free spinning deployment mechanism. This paper examines various types of solar panels to reach a conclusion of the efficient design when deployed on a 1U or 2U unit. However, calculations, analysis, simulations do not always give an extensive picture of how the satellite shall behave during deployment. Thus, testing in a microgravity environment gives a more accurate answer of how the satellite shall behave. In our work, various solar panels mechanisms are developed and eventually tested in microgravity. The first accordion structure for a 1U structure is tested in a microgravity environment through a parabolic flight with the National Research Council Falcon 20 aircraft. The results are recorded and analyzed to optimize the next design. The second design is based on a drag-sail mechanism for a 2U structure. The design is improved upon the first experiment results for the next parabolic flight. The simulated amount of power generated in orbit is also a main factor in our evaluation.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6728
Author(s):  
Yun-Ho Shin ◽  
Jeung-Hoon Lee

The accurate modeling of the complex dynamic stiffness of inflated rubber diaphragms in pneumatic springs is necessary for an efficient design of vibration isolation tables for precision instruments, such as optical devices and nano-scale equipment. In addition to pressurized air, rubber diaphragms, essentially employed for the prevention of air leakage, make a significant contribution to the total complex stiffness. To reflect the effect of the dynamic stiffness of the inflated rubber diaphragm on the total complex stiffness during the initial design or design improvement stage, it is desirable to predict the complex stiffness of the inflated rubber diaphragm beforehand. In this paper, an estimation method for the complex stiffness of inflated rubber diaphragms using the commercial finite element method (e.g., ABAQUS) is proposed. The proposed method reflects their dynamic characteristics under the large static deformation by the Mooney–Rivlin and Morman’s constitutive equations. The results of comparison with experimental results indicate that the predictions obtained by the proposed method are congruent with the experimental values of the diaphragm.


Author(s):  
Takao Suzuki ◽  
Hossein Nuri

For future high density magneto-optical recording materials, a Bi-substituted garnet film ((BiDy)3(FeGa)5O12) is an attractive candidate since it has strong magneto-optic effect at short wavelengths less than 600 nm. The signal in read back performance at 500 nm using a garnet film can be an order of magnitude higher than a current rare earth-transition metal amorphous film. However, the granularity and surface roughness of such crystalline garnet films are the key to control for minimizing media noise.We have demonstrated a new technique to fabricate a garnet film which has much smaller grain size and smoother surfaces than those annealed in a conventional oven. This method employs a high ramp-up rate annealing (Γ = 50 ~ 100 C/s) in nitrogen atmosphere. Fig.1 shows a typical microstruture of a Bi-susbtituted garnet film deposited by r.f. sputtering and then subsequently crystallized by a rapid thermal annealing technique at Γ = 50 C/s at 650 °C for 2 min. The structure is a single phase of garnet, and a grain size is about 300A.


Sign in / Sign up

Export Citation Format

Share Document