scholarly journals Antifouling Activity of Hydroxyl Functional Groups in PVA Thin Films Against the Settlement of Sessile Organisms in Laboratory and Field Conditions

2020 ◽  
Vol 33 (6) ◽  
pp. 591-598
Author(s):  
Takayuki Murosaki ◽  
Ai Momose ◽  
Yasuyuki Nogata ◽  
Shinya Onodera ◽  
Otohiko Azuma ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 623
Author(s):  
Monika Gupta ◽  
Huzein Fahmi Hawari ◽  
Pradeep Kumar ◽  
Zainal Arif Burhanudin ◽  
Nelson Tansu

The demand for carbon dioxide (CO2) gas detection is increasing nowadays. However, its fast detection at room temperature (RT) is a major challenge. Graphene is found to be the most promising sensing material for RT detection, owing to its high surface area and electrical conductivity. In this work, we report a highly edge functionalized chemically synthesized reduced graphene oxide (rGO) thin films to achieve fast sensing response for CO2 gas at room temperature. The high amount of edge functional groups is prominent for the sorption of CO2 molecules. Initially, rGO is synthesized by reduction of GO using ascorbic acid (AA) as a reducing agent. Three different concentrations of rGO are prepared using three AA concentrations (25, 50, and 100 mg) to optimize the material properties such as functional groups and conductivity. Thin films of three different AA reduced rGO suspensions (AArGO25, AArGO50, AArGO100) are developed and later analyzed using standard FTIR, XRD, Raman, XPS, TEM, SEM, and four-point probe measurement techniques. We find that the highest edge functionality is achieved by the AArGO25 sample with a conductivity of ~1389 S/cm. The functionalized AArGO25 gas sensor shows recordable high sensing properties (response and recovery time) with good repeatability for CO2 at room temperature at 500 ppm and 50 ppm. Short response and recovery time of ~26 s and ~10 s, respectively, are achieved for 500 ppm CO2 gas with the sensitivity of ~50 Hz/µg. We believe that a highly functionalized AArGO CO2 gas sensor could be applicable for enhanced oil recovery, industrial and domestic safety applications.


2015 ◽  
Vol 35 (3) ◽  
pp. 231-239 ◽  
Author(s):  
Maria Mucha ◽  
Sylwia Ksiazek ◽  
Halina Kaczmarek

Abstract Thin films of chitosan acetate (CSA)-copper (II) [Cu (II)] complex were prepared by mixing Cu (II) oxide (CuO) nanoparticles in acetic acid solution of chitosan and the casting method. The changes in chemical structure of modified chitosan were confirmed by UV-Vis spectroscopy. Fourier transform infrared (FTIR) spectroscopy was applied to monitor thermal degradation processes occurring in chitosan and its composites with Cu. The changes in concentration of chitosan functional groups were observed. On a base of the kinetic constants of group thermal degradation at various temperatures, the activation energies for various groups were calculated. It was found that the presence of Cu (II) ions accelerates the thermal degradation of chitosan acetate. The higher the Cu (II) content was in the CSA matrix, the lower was the activation energy.


2005 ◽  
Vol 11 (S03) ◽  
pp. 162-165 ◽  
Author(s):  
L. von Mühlen ◽  
R. A. Simao ◽  
C. A. Achete

Surface chemistry and topography of materials are generally preponderant factors in a series of material properties, such as adhesion, wettability, friction and optical properties [1]. Wettability of films, for example, can be altered significantly by modifying its surface roughness and also by incorporating functional groups. Plasma treatment is a powerful and versatile way to modify surface properties of amorphous nitrogen-incorporated carbon thin films (a-C:H(N)) and obtain materials with improved properties, once it is possible to modify the surfaces in a controlled way by specific settings of plasma conditions. [2 - 4]


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 712
Author(s):  
Jeongwoo Park ◽  
Neung Kyung Yu ◽  
Donghak Jang ◽  
Eunae Jung ◽  
Hyunsik Noh ◽  
...  

Various processes based on atomic layer deposition (ALD) have been reported for growing Ti-based thin films such as TiN and TiO2. To improve the uniformity and conformity of thin films grown via ALD, fundamental understanding of the precursor–substrate surface reactions is required. Herein, we present a density functional theory (DFT) study of the initial nucleation process of some titanium halide precursors (TiCl4, TiBr4, and TiI4) on Si surfaces having –OH or –NH2 functional groups. We consider the most favorable adsorption site in the reaction between the precursor and functional group of the surface, based on the thermodynamics and kinetics of the reaction. Sequential dissociation reaction mechanisms of halide ligands were systematically investigated. The exothermicity of the dissociative adsorption was found to be in the order of: TiI4 > TiBr4 > TiCl4. In addition, the precursors were observed to be more exothermic and show higher reaction rate constant when adsorbed on the –OH–terminated surface than on the –NH2–terminated surface. These observations reveal the selectivity of deposition by surface functional groups.


2004 ◽  
Vol 828 ◽  
Author(s):  
Ichiro Matsubara ◽  
Norimitsu Murayama ◽  
Woosuck Shin ◽  
Noriya Izu

ABSTRACTOrganically hybridized In2O3 thin films have been prepared. The surface of In2O3 thin films was hybridized by organic components with various kinds of functional groups. Upon exposure to CO gas, the electrical resistance of the hybrid sensor with amino group in the organic components increased (R-increasing response), whereas H2 gas caused the decreasing in the sensor resistance. No response was obtained to CH4 gas. For the n-type metal oxide semiconductors, the R-increasing response cannot be explained by the ordinary combustion mechanism. The response of R-increasing or R-decreasing to CO was controlled by functional groups of organic components as in the case of SnO2-based hybrid thin films. The approach of organic-inorganic hybridization is effective to realize the selective detection of reducing gas molecules.


Sign in / Sign up

Export Citation Format

Share Document