scholarly journals Numerical simulation of heavy oil flows in pipes using the core-annular flow technique

Author(s):  
K. C. O. Crivelaro ◽  
Y. T. Damacena ◽  
T. H. F. Andrade ◽  
A. G. B. Lima ◽  
S. R. Farias Neto

2018 ◽  
Vol 849 ◽  
pp. 419-447 ◽  
Author(s):  
Kiyoung Kim ◽  
Haecheon Choi

The characteristics of a turbulent core-annular flow with water-lubricated high viscosity oil in a vertical pipe are investigated using direct numerical simulation, in conjunction with a level-set method to track the phase interface between oil and water. At a given mean wall friction ($Re_{\unicode[STIX]{x1D70F}}=u_{\unicode[STIX]{x1D70F}}R/\unicode[STIX]{x1D708}_{w}=720$, where $u_{\unicode[STIX]{x1D70F}}$ is the friction velocity, $R$ is the pipe radius and $\unicode[STIX]{x1D708}_{w}$ is the kinematic viscosity of water), the total volume flow rate of a core-annular flow is similar to that of a turbulent single-phase pipe flow of water, indicating that water lubrication is an effective tool to transport high viscosity oil in a pipe. The high viscosity oil flow in the core region is almost a plug flow due to its high viscosity, and the water flow in the annular region is turbulent except for the case of large oil volume fraction (e.g. 0.91 in the present study). With decreasing oil volume fraction, the mean velocity profile in the annulus becomes more like that of turbulent pipe flow, but the streamwise evolution of vortical structures is obstructed by the phase interface wave. In a reference frame moving with the core velocity, water is observed to be trapped inside the wave valley in the annulus, and only a small amount of water runs through the wave crest. The phase interface of the core-annular flow consists of different streamwise and azimuthal wavenumber components for different oil holdups. The azimuthal wavenumber spectra of the phase interface amplitude have largest power at the smallest wavenumber whose corresponding wavelength is the pipe circumference, while the streamwise wavenumber having the largest power decreases with decreasing oil volume fraction. The overall convection velocity of the phase interface is slightly lower than the core velocity. Finally, we suggest a predictive oil holdup model by defining the displacement thickness in the annulus and considering the boundary layer characteristics of water flow. This model predicts the variation of the oil holdup with the superficial velocity ratio very well.



Author(s):  
Li-fei Zeng ◽  
Guan-wei Liu ◽  
Jing-ru Mao ◽  
Shun-sen Wang ◽  
Qi Yuan ◽  
...  

Control valves are used as flow regulators for steam turbines, which operate under wide ranges of valve openings and pressure ratios. The inherent throttling action and complex 3D flow in control valves result in vibration and intolerable noise at small and medium valve openings. The vibration and noise clearly are firmly with the flow pattern. Experiments and numerical simulation are the primary means of determining the mechanisms. In this paper, a phenomenon of sound mutation in control valve was experimentally observed by continuously changing the pressure ratio. This phenomenon is explained for the first time. Different noise and pressure fluctuations can appear even under the same condition, depending on the process of changing the pressure ratio. A method of continuously changing the pressure ratio was used in the unsteady numerical simulation to reveal the mechanism. The results show that sound mutation occurs due to the change of annular flow and core flow. The annular flow has a lower noise and a more stable flow pattern than the core flow. Sound mutation can be used as a simple way of determining the ranges of the core flow and the annular flow.



2021 ◽  
Vol 201 ◽  
pp. 108436
Author(s):  
Daode Hua ◽  
Pengcheng Liu ◽  
Peng Liu ◽  
Changfeng Xi ◽  
Shengfei Zhang ◽  
...  


2013 ◽  
Author(s):  
Lu Sun ◽  
Yuetian Liu ◽  
Minfeng Chen ◽  
Xiaofeng Li ◽  
Hairu Zhang ◽  
...  




2017 ◽  
Author(s):  
Bing Wei ◽  
Shishi Pang ◽  
Wanfen Pu ◽  
Laiming Lu ◽  
Chongyang Wang ◽  
...  


Author(s):  
Siva Kumar ◽  
Thilakavathi Ramamurthy ◽  
Bala Subramanian ◽  
Ahmed Basha

The present investigation attempts to study the hydrodynamic characteristics of the fluidized bed electrode. A core-annular flow model with a transfer of particles between core-annular layers has been proposed to describe the flow behavior of conducting particles in the fluidized bed electrode. The effect of individual parameters on the rate of the particle transfer across the layer and thickness of the core-annular has been critically examined and the model simulation has been verified with the data reported in the literature.



2007 ◽  
Vol 127 ◽  
pp. 259-264
Author(s):  
Hong Yuan Fang ◽  
Cheng Iei Fan

Numerical simulation method is employed in the article to analyze the stress field of thick 7B04 aluminum alloy board during manufacturing procedure of solution treatment, calendaring and stretching. The simulation results show that the surface of the board endures compressive stress while the core segment endures tensile stress, and the distribution of the stress is very inhomogeneous. The calendaring procedure helps to decrease the stress and redistribute the stress uniformly, but it also leads to stress concentration at the two ends of the board, which engenders bad influence on the subsequent processing. The board deforms plastically when being stretched, thus the stress decreases greatly and is redistributed uniformly.



Author(s):  
Antonio C. Bannwart ◽  
Oscar M. H. Rodriguez ◽  
Jorge L. Biazussi ◽  
Fabio N. Martins ◽  
Marcelo F. Selli ◽  
...  

The use of the core-annular flow pattern, where a thin fluid surrounds a very viscous one, has been suggested as an attractive artificial-lift method for heavy oils in the current Brazilian ultra-deepwater production scenario. This paper reports the pressure drop measurements and the core-annular flow observed in a 2 7/8-inch and 300 meter deep pilot-scale well conveying a mixture of heavy crude oil (2000 mPa.s and 950 kg/m3 at 35 C) and water at several combinations of the individual flow rates. The two-phase pressure drop data are compared with those of single-phase oil flow to assess the gains due to water injection. Another issue is the handling of the core-annular flow once it has been established. High-frequency pressure-gradient signals were collected and a treatment based on the Gabor transform together with neural networks is proposed as a promising solution for monitoring and control. The preliminary results are encouraging. The pilot-scale tests, including long-term experiments, were conducted in order to investigate the applicability of using water to transport heavy oils in actual wells. It represents an important step towards the full scale application of the proposed artificial-lift technology. The registered improvements in terms of oil production rate and pressure drop reductions are remarkable.



Sign in / Sign up

Export Citation Format

Share Document