scholarly journals Deep Spectral Kernel Learning

Author(s):  
Hui Xue ◽  
Zheng-Fan Wu ◽  
Wei-Xiang Sun

Recently, spectral kernels have attracted wide attention in complex dynamic environments. These advanced kernels mainly focus on breaking through the crucial limitation on locality, that is, the stationarity and the monotonicity. But actually, owing to the inefficiency of shallow models in computational elements, they are more likely unable to accurately reveal dynamic and potential variations. In this paper, we propose a novel deep spectral kernel network (DSKN) to naturally integrate non-stationary and non-monotonic spectral kernels into elegant deep architectures in an interpretable way, which can be further generalized to cover most kernels. Concretely, we firstly deal with the general form of spectral kernels by the inverse Fourier transform. Secondly, DSKN is constructed by embedding the preeminent spectral kernels into each layer to boost the efficiency in computational elements, which can effectively reveal the dynamic input-dependent characteristics and potential long-range correlations by compactly representing complex advanced concepts. Thirdly, detailed analyses of DSKN are presented. Owing to its universality, we propose a unified spectral transform technique to flexibly extend and reasonably initialize domain-related DSKN. Furthermore, the representer theorem of DSKN is given. Systematical experiments demonstrate the superiority of DSKN compared to state-of-the-art relevant algorithms on varieties of standard real-world tasks.

Author(s):  
Qiao Liu ◽  
Hui Xue

Unsupervised domain adaptation (UDA) has been received increasing attention since it does not require labels in target domain. Most existing UDA methods learn domain-invariant features by minimizing discrepancy distance computed by a certain metric between domains. However, these discrepancy-based methods cannot be robustly applied to unsupervised time series domain adaptation (UTSDA). That is because discrepancy metrics in these methods contain only low-order and local statistics, which have limited expression for time series distributions and therefore result in failure of domain matching. Actually, the real-world time series are always non-local distributions, i.e., with non-stationary and non-monotonic statistics. In this paper, we propose an Adversarial Spectral Kernel Matching (AdvSKM) method, where a hybrid spectral kernel network is specifically designed as inner kernel to reform the Maximum Mean Discrepancy (MMD) metric for UTSDA. The hybrid spectral kernel network can precisely characterize non-stationary and non-monotonic statistics in time series distributions. Embedding hybrid spectral kernel network to MMD not only guarantees precise discrepancy metric but also benefits domain matching. Besides, the differentiable architecture of the spectral kernel network enables adversarial kernel learning, which brings more discriminatory expression for discrepancy matching. The results of extensive experiments on several real-world UTSDA tasks verify the effectiveness of our proposed method.


2009 ◽  
Author(s):  
Sallie J. Weaver ◽  
Rebecca Lyons ◽  
Eduardo Salas ◽  
David A. Hofmann

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1091
Author(s):  
Izaak Van Crombrugge ◽  
Rudi Penne ◽  
Steve Vanlanduit

Knowledge of precise camera poses is vital for multi-camera setups. Camera intrinsics can be obtained for each camera separately in lab conditions. For fixed multi-camera setups, the extrinsic calibration can only be done in situ. Usually, some markers are used, like checkerboards, requiring some level of overlap between cameras. In this work, we propose a method for cases with little or no overlap. Laser lines are projected on a plane (e.g., floor or wall) using a laser line projector. The pose of the plane and cameras is then optimized using bundle adjustment to match the lines seen by the cameras. To find the extrinsic calibration, only a partial overlap between the laser lines and the field of view of the cameras is needed. Real-world experiments were conducted both with and without overlapping fields of view, resulting in rotation errors below 0.5°. We show that the accuracy is comparable to other state-of-the-art methods while offering a more practical procedure. The method can also be used in large-scale applications and can be fully automated.


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


2017 ◽  
Vol 70 (6) ◽  
pp. 1276-1292
Author(s):  
Chong Yu ◽  
Jiyuan Cai ◽  
Qingyu Chen

To achieve more accurate navigation performance in the landing process, a multi-resolution visual positioning technique is proposed for landing assistance of an Unmanned Aerial System (UAS). This technique uses a captured image of an artificial landmark (e.g. barcode) to provide relative positioning information in the X, Y and Z axes, and yaw, roll and pitch orientations. A multi-resolution coding algorithm is designed to ensure the UAS will not lose the detection of the landing target due to limited visual angles or camera resolution. Simulation and real world experiments prove the performance of the proposed technique in positioning accuracy, detection accuracy, and navigation effect. Two types of UAS are used to verify the generalisation of the proposed technique. Comparison experiments to state-of-the-art techniques are also included with the results analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-24 ◽  
Author(s):  
David W. Pravica ◽  
Njinasoa Randriampiry ◽  
Michael J. Spurr

The family ofnth orderq-Legendre polynomials are introduced. They are shown to be obtainable from the Jacobi theta function and to satisfy recursion relations and multiplicatively advanced differential equations (MADEs) that are analogues of the recursion relations and ODEs satisfied by thenth degree Legendre polynomials. Thenth orderq-Legendre polynomials are shown to have vanishingkth moments for0≤k<n, as does thenth degree truncated Legendre polynomial. Convergence results are obtained, approximations are given, a reciprocal symmetry is shown, and nearly orthonormal frames are constructed. Conditions are given under which a MADE remains a MADE under inverse Fourier transform. This is used to construct new wavelets as solutions of MADEs.


Author(s):  
Sen Zhang ◽  
Dingxi Wang ◽  
Yi Li ◽  
Hangkong Wu ◽  
Xiuquan Huang

Abstract The time spectral method is a very popular reduced order frequency method for analyzing unsteady flow due to its advantage of being easily extended from an existing steady flow solver. Condition number of the inverse Fourier transform matrix used in the method can affect the solution convergence and stability of the time spectral equation system. This paper aims at evaluating the effect of the condition number of the inverse Fourier transform matrix on the solution stability and convergence of the time spectral method from two aspects. The first aspect is to assess the impact of condition number using a matrix stability analysis based upon the time spectral form of the scalar advection equation. The relationship between the maximum allowable Courant number and the condition number will be derived. Different time instant groups which lead to the same condition number are also considered. Three numerical discretization schemes are provided for the stability analysis. The second aspect is to assess the impact of condition number for real life applications. Two case studies will be provided: one is a flutter case, NASA rotor 67, and the other is a blade row interaction case, NASA stage 35. A series of numerical analyses will be performed for each case using different time instant groups corresponding to different condition numbers. The conclusion drawn from the two real life case studies will corroborate the relationship derived from the matrix stability analysis.


2021 ◽  
Author(s):  
Leila Zahedi ◽  
Farid Ghareh Mohammadi ◽  
M. Hadi Amini

Machine learning techniques lend themselves as promising decision-making and analytic tools in a wide range of applications. Different ML algorithms have various hyper-parameters. In order to tailor an ML model towards a specific application, a large number of hyper-parameters should be tuned. Tuning the hyper-parameters directly affects the performance (accuracy and run-time). However, for large-scale search spaces, efficiently exploring the ample number of combinations of hyper-parameters is computationally challenging. Existing automated hyper-parameter tuning techniques suffer from high time complexity. In this paper, we propose HyP-ABC, an automatic innovative hybrid hyper-parameter optimization algorithm using the modified artificial bee colony approach, to measure the classification accuracy of three ML algorithms, namely random forest, extreme gradient boosting, and support vector machine. Compared to the state-of-the-art techniques, HyP-ABC is more efficient and has a limited number of parameters to be tuned, making it worthwhile for real-world hyper-parameter optimization problems. We further compare our proposed HyP-ABC algorithm with state-of-the-art techniques. In order to ensure the robustness of the proposed method, the algorithm takes a wide range of feasible hyper-parameter values, and is tested using a real-world educational dataset.


2014 ◽  
Vol Volume 2 ◽  
Author(s):  
Hasmik Atoyan ◽  
Jean-Marc Robert ◽  
Jean-Rémi Duquet

The utilization of Decision Support Systems (DSS) in complex dynamic environments leads the human operator almost inevitably to having to face several types of uncertainties. Thus it is essential for system designers to clearly understand the different types of uncertainties that could exist in human-machine systems of complex environments, to know their impacts on the operator's trust in the systems and decision-making process, and to have guidelines on how to present uncertain information on user interfaces. It is also essential for them to have an overview of the different stages, levels, and types of system automation, and to know their possible impacts on the creation of different types of uncertainties. This paper investigates these topics and aim at helping researchers and practitioners to deal with uncertainties in complex environments.


Sign in / Sign up

Export Citation Format

Share Document