scholarly journals Palynofacies and Source Rocks Evaluation for Selected Samples of Subba Oil Field, Southern Iraq

2020 ◽  
pp. 1063-1079
Author(s):  
Hussein A. Chafeet ◽  
Nawfal A. Dahham ◽  
Amna M. Handhal

This study includes a palynological and organic geochemical evaluation of Nahr Umr, Zubair, and Yamama Formations in the Subba field, Southern Iraq, represented by three wells (Su-14, Su-9 and Su-8). The determination of quantity organic matter showed that the rocks of Nahr Umr Formation had a total organic carbon of 4.76%, indicating very good production of hydrocarbons where type (II) kerogen was dominant, but the rocks were thermally immature. Zubair Formation had a total organic carbon of 1.91% to 2.26%, indicating good to very good production of hydrocarbons where kerogen of types (I) and (II/III) were dominant, with low thermal maturity. Yamama Formation showed a total organic carbon of 1.68%, revealing good production of hydrocarbons where type (I) kerogen was dominant, with low thermal maturity. Facies analysis of Nahr Umr, Zubair and Yamama Formations demonstrated the presence of two facies, namely the distal dysoxic-Oxic shelf and the distal suboxic-Anoxic basin. It is clear that the environment of rock deposition is a marine environment, which is far from the coast.

2017 ◽  
Vol 36 (3) ◽  
pp. 355-372 ◽  
Author(s):  
Hua Liu ◽  
Jinglun Ren ◽  
Jianfei Lyu ◽  
Xueying Lyu ◽  
Yuelin Feng

The K1s, K1d, K1t, and K1a Formations are potential source rock intervals for hydrocarbon formation, all of which are part of the Lower Cretaceous system in the Baibei Depression in the Erlian Basin in China. However, no well has found oil flow because the hydrocarbon-generating potential of the source rocks has not been comprehensively evaluated. Based on organic geochemical and petrological analyses, all the source rocks possess highly variable total organic carbon and S1 + S2 contents. Total organic carbon and S1 + S2 contents indicate that the K1a2 Formation through the K1d1 Formation are source rocks that have fair to good generative potential and the K1d2 Formation through the K1s Formation are source rocks that have good to very good generative potential. The organic matter in the K1a2 Formation is dominated by Type I and II kerogen; thus, it is considered to be oil prone based on H/C versus O/C plots. Most of the analyzed samples were deposited in reducing environments and sourced from marine algae; thus, they are oil prone. However, only two source rock intervals were thermally mature with vitrinite reflectance values in the required range. Hydrocarbon-generating histories show that the K1t and K1a2 intervals began to generate hydrocarbons during the depositional period of the K1d2 and K1d3 Formations, respectively, and stopped generating hydrocarbons at the end of the depositional period of the late Cretaceous. Therefore, the main stage of hydrocarbon migration and accumulation was between the depositional period of the K1d2 and K1s Formations, and the critical moment was the depositional period of the late K1s Formation. The generation conversion efficiency reached approximately 55% in the K1a2 Formation and 18% in the K1t Formation at the end of the Cretaceous sedimentary stage. In general, the effective oil traps are those reservoirs that are near the active source rock in the generating sags in the Baibei Depression.


2017 ◽  
Vol 5 (2) ◽  
pp. SF225-SF242 ◽  
Author(s):  
Xun Sun ◽  
Quansheng Liang ◽  
Chengfu Jiang ◽  
Daniel Enriquez ◽  
Tongwei Zhang ◽  
...  

Source-rock samples from the Upper Triassic Yanchang Formation in the Ordos Basin of China were geochemically characterized to determine variations in depositional environments, organic-matter (OM) source, and thermal maturity. Total organic carbon (TOC) content varies from 4 wt% to 10 wt% in the Chang 7, Chang 8, and Chang 9 members — the three OM-rich shale intervals. The Chang 7 has the highest TOC and hydrogen index values, and it is considered the best source rock in the formation. Geochemical evidence indicates that the main sources of OM in the Yanchang Formation are freshwater lacustrine phytoplanktons, aquatic macrophytes, aquatic organisms, and land plants deposited under a weakly reducing to suboxic depositional environment. The elevated [Formula: see text] sterane concentration and depleted [Formula: see text] values of OM in the middle of the Chang 7 may indicate the presence of freshwater cyanobacteria blooms that corresponds to a period of maximum lake expansion. The OM deposited in deeper parts of the lake is dominated by oil-prone type I or type II kerogen or a mixture of both. The OM deposited in shallower settings is characterized by increased terrestrial input with a mixture of types II and III kerogen. These source rocks are in the oil window, with maturity increasing with burial depth. The measured solid-bitumen reflectance and calculated vitrinite reflectance from the temperature at maximum release of hydrocarbons occurs during Rock-Eval pyrolysis ([Formula: see text]) and the methylphenanthrene index (MPI-1) chemical maturity parameters range from 0.8 to [Formula: see text]. Because the thermal labilities of OM are associated with the kerogen type, the required thermal stress for oil generation from types I and II mixed kerogen has a higher and narrower range of temperature for hydrocarbon generation than that of OM dominated by type II kerogen or types II and III mixed kerogen deposited in the prodelta and delta front.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1480 ◽  
Author(s):  
Liu ◽  
Tang ◽  
Xi

This study analyzes samples from the Lower Cambrian Niutitang Formation in northern Guizhou Province to enable a better understanding of total organic carbon (TOC) enrichment and its impact on the pore characteristics of over-mature marine shale. Organic geochemical analysis, X-ray diffraction, scanning electron microscopy, helium porosity, and low-temperature nitrogen adsorption experiments were conducted on shale samples. Their original TOC (TOCo) content and organic porosity were estimated by theoretical calculation, and fractal dimension D was computed with the fractal Frenkel–Halsey–Hill model. The results were then used to consider which factors control TOC enrichment and pore characteristics. The samples are shown to be dominated by type-I kerogen with a TOC content of 0.29‒9.36% and an equivalent vitrinite reflectance value of 1.72‒2.72%. The TOCo content varies between 0.64% and 18.17%, and the overall recovery coefficient for the Niutitang Formation was 2.16. Total porosity of the samples ranged between 0.36% and 6.93%. TOC content directly controls porosity when TOC content lies in the range 1.0% to 6.0%. For samples with TOC < 1.0% and TOC > 6.0%, inorganic pores are the main contributors to porosity. Additionally, pore structure parameters show no obvious trends with TOC, quartz, and clay mineral content. The fractal dimension D1 is between 2.619 and 2.716, and D2 is between 2.680 and 2.854, illustrating significant pore surface roughness and structural heterogeneity. No single constituent had a dominant effect on the fractal characteristics.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jian Fu ◽  
Xuesong Li ◽  
Yonghe Sun ◽  
Qiuli Huo ◽  
Ting Gao ◽  
...  

In the evaluation of source rocks, the total organic carbon (TOC) is an important indicator to evaluate the hydrocarbon generation potential of source rocks. At present, the commonly used methods for assessing TOC include △ log R and neural network method. However, practice shows that these methods have limitations in the application of unconventional intervals of sand-shale interbeds, and they cannot sufficiently reflect the variation of TOC in the vertical direction. Therefore, a total organic carbon (TOC) evaluation model suitable for shale and tight sandstone was established based on the effective medium symmetrical conduction theory. The model consists of four components: nonconductive matrix particles, clay minerals, organic components (solid organic matter and hydrocarbons), and pore water. The conductive phase in the model includes clay minerals and pore water, and other components are treated as nonconductive phases. When describing the conductivity of rock, each component in the model is completely symmetrical, and anisotropic characteristics of each component are considered. The model parameters are determined through the optimization method, and the bisection iteration method is used to solve the model equation. Compared with the classic TOC calculation method, the new model can evaluate the abundance of organic matter in shale and tight sandstone, which provides a new option to assess the TOC of rocks based on logging methods.


2019 ◽  
Vol 7 (4) ◽  
pp. SJ67-SJ75
Author(s):  
Chao Liu ◽  
Lidong Sun ◽  
Jijun Li ◽  
Shuangfang Lu ◽  
Lei Tian ◽  
...  

To lay the foundation for the exploration of shale gas, we calculated the total organic carbon (TOC) of Shahezi Formation source rocks in the Xujiaweizi Fault Depression in the Songliao Basin by using the measuring data and the logging curves. Because the source rocks in the study area were formed in a lacustrine basin, they are characterized by strong organic heterogeneity, making it difficult to objectively characterize any changes in the TOC of the underground source rocks based on discrete and limited sampling. In addition, because the source rock is relatively rich in shale and poor in organic matter, the logging response features of high natural gamma, medium-high interval transit time, and medium-low resistivity, making it easily identified. However, because the logging parameters to predict the TOC of source rocks are not universal, it is impossible to establish a prediction equation that is universally applicable. To solve the above problems, we used the variable-coefficient [Formula: see text] technique to predict the TOC of the source rocks in the study area. We defined the two key parameters that affect the TOC prediction in the classic [Formula: see text] technique as the undetermined coefficients, and the coefficients were determined according to the logging and geologic data of the individual wells. The application results indicate that the variable-coefficient [Formula: see text] technique has an average relative error of 17.5% in the prediction of the TOC, which is 16.1% lower than that of the classic [Formula: see text] technique. Thus, the prediction results can effectively reflect the vertical variation in the TOC of source rocks. Based on the logging evaluation results for the TOC of source rocks in 35 wells throughout the study area, the thickness of the high-quality source rocks in the fourth member of the Shahezi Formation was mapped. The thickness of the high-quality source rocks in the fourth member of the Shahezi Formation is generally [Formula: see text]. There are two centers of greater thickness in the plane, with the maximum thickness of more than 70 m.


2019 ◽  
Vol 38 (3) ◽  
pp. 654-681 ◽  
Author(s):  
Lixin Mao ◽  
Xiangchun Chang ◽  
Youde Xu ◽  
Bingbing Shi ◽  
Dengkuan Gao

Previous studies on Chepaizi Uplift mainly focused on its reservoirs, and the potential source rocks natively occurred was ignored. During the exploration process, dark mudstones and tuffaceous mudstones were found in the Carboniferous interval. These possible source rocks have caused great concern about whether they have hydrocarbon generation potential and can contribute to the reservoirs of the Chepaizi Uplift. In this paper, the potential source rocks are not only evaluated by the organic richness, type, maturity, and depositional environment, but also divided into different kinetics groups. The Carboniferous mudstones dominated by Type III kerogen were evolved into the stage of mature. Biomarkers indicate that the source rocks were deposited in a marine environment under weakly reducing conditions and received mixed aquatic and terrigenous organic matter, with the latter being predominant. The effective source rocks are characterized by the total organic carbon values >0.5 wt.% and the buried depth >1500 m. The tuffaceous mudstone shows a greater potential for its lower active energy and longer hydrocarbon generation time. Considering the hydrocarbon generation potential, base limits of the total organic carbon and positive correlation of oil–source rock together, the native Carboniferous mudstones and tuffaceous mudstones might contribute to the Chepaizi Uplift reservoirs of the northwestern region of the Junggar Basin, especially the deeper effective source rocks should be paid enough attention to.


1994 ◽  
Vol 34 (1) ◽  
pp. 307
Author(s):  
J.L. Lin ◽  
H.A. Salisch

This paper discusses, in some detail, the log responses to total organic carbon (TOC) in the Upper and Middle Velkerri Formation in an area of the McArthur Basin, Northern Territory, Australia. The Formation Density log was found to be superior to other standard well logs in assessing values of TOC in the area studied. A theoretical model was used to estimate TOC from the Formation Density log. The model was established and its applicability was verified by comparison with other models. Based on geochemical properties the Upper and Middle Velkerri Formation is classified into three categories: nonsource rocks, mature source rocks and immature source rock. They show significant differences in the well log responses, and different models had to be established for the three categories to determine the TOC content from well logs. Comparison of the results of using a different model for each category instead of a single model to cover the three categories shows that the former approach gives more meaningful answers.


Sign in / Sign up

Export Citation Format

Share Document